Skip to main content

Radial-velocity Searches for Planets Around Active Stars

  • Book
  • © 2016

Overview

  • Nominated as an outstanding Ph.D. thesis by the University of St. Andrews, UK
  • Includes clear explanations, making it easy to read and accessible to a broad audience with minimum scientific background knowledge
  • Presents a new, state-of-the-art technique that is expected to become mainstream in planet-hunting research over the next few years
  • Demonstrates that the radial-velocity variations mainly arise from suppression of photospheric convection by magnetic fields. This finding represents a significant step towards measuring the masses of potentially habitable planets orbiting Sun-like stars
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This thesis develops new and powerful methods for identifying planetary signals in the presence of “noise” generated by stellar activity, and explores the physical origin of stellar intrinsic variability, using unique observations of the Sun seen as a star. In particular, it establishes that the intrinsic stellar radial-velocity variations mainly arise from suppression of photospheric convection by magnetic fields. With the advent of powerful telescopes and instruments we are now on the verge of discovering real Earth twins in orbit around other stars. The intrinsic variability of the host stars themselves, however, currently remains the main obstacle to determining the masses of such small planets. The methods developed here combine Gaussian-process regression for modeling the correlated signals arising from evolving active regions on a rotating star, and Bayesian model selection methods for distinguishing genuine planetary signals from false positives produced by stellar magnetic activity.
The findings of this thesis represent a significant step towards determining the masses of potentially habitable planets orbiting Sun-like stars. 

Authors and Affiliations

  • Harvard College Observatory , Cambridge, USA

    Raphaëlle D. Haywood

About the author

Raphaëlle D. Haywood studied Physics at Imperial College London, UK, where she obtained her MSci degree in 2011. She went on to do her PhD in Astrophysics on the detection of Neptune- and Earth-mass exoplanets under the supervision of Prof. Andrew Collier Cameron at the University of St Andrews, UK, where she recently graduated in fall 2015. She is now a postdoctoral fellow at Harvard College Observatory, working with Prof. David Charbonneau and his group, where she is pursuing her investigations on the magnetic variability of the Sun and other stars and pushing the magnetic activity barrier in exoplanet mass determinations ever further.

Bibliographic Information

Publish with us