Table of contents

  1. Front Matter
    Pages i-xvii
  2. David R. Adams
    Pages 1-6
  3. David R. Adams
    Pages 7-12
  4. David R. Adams
    Pages 13-19
  5. David R. Adams
    Pages 21-27
  6. David R. Adams
    Pages 29-36
  7. David R. Adams
    Pages 37-42
  8. David R. Adams
    Pages 43-50
  9. David R. Adams
    Pages 51-52
  10. David R. Adams
    Pages 53-61
  11. David R. Adams
    Pages 63-69
  12. David R. Adams
    Pages 71-76
  13. David R. Adams
    Pages 77-83
  14. David R. Adams
    Pages 85-88
  15. David R. Adams
    Pages 89-93
  16. David R. Adams
    Pages 95-102
  17. David R. Adams
    Pages 103-109
  18. David R. Adams
    Pages 111-114
  19. Back Matter
    Pages 115-124

About this book

Introduction

In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis.  There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any “full” interpolation results for linear operators between Morrey spaces.

This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory.      

Keywords

Embedding Theorems Function Spaces Hausdorff Measure Morrey Spaces Potential Theory Interpolation Singular Sets

Authors and affiliations

  • David R. Adams
    • 1
  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-26681-7
  • Copyright Information Springer International Publishing Switzerland 2015
  • Publisher Name Birkhäuser, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-26679-4
  • Online ISBN 978-3-319-26681-7
  • Series Print ISSN 2296-5009
  • Series Online ISSN 2296-5017
  • About this book