Skip to main content
  • Textbook
  • © 2016

Introduction to Plasma Physics and Controlled Fusion

Authors:

  • Third edition of this bestselling textbook providing a coherent and easy-to-understand introduction to plasma physics and controlled fusion

  • Updates all existing chapters and includes two additional chapters on Special Plasmas and Plasma Applications

  • Contains new and advanced problem sets in each chapter

Buying options

eBook USD 59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-22309-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 74.99
Price excludes VAT (USA)
Hardcover Book USD 109.99
Price excludes VAT (USA)

This is a preview of subscription content, access via your institution.

Table of contents (11 chapters)

  1. Front Matter

    Pages i-xii
  2. Introduction

    • Francis F. Chen
    Pages 1-18
  3. Single-Particle Motions

    • Francis F. Chen
    Pages 19-49
  4. Plasmas as Fluids

    • Francis F. Chen
    Pages 51-74
  5. Waves in Plasmas

    • Francis F. Chen
    Pages 75-144
  6. Diffusion and Resistivity

    • Francis F. Chen
    Pages 145-185
  7. Equilibrium and Stability

    • Francis F. Chen
    Pages 187-210
  8. Kinetic Theory

    • Francis F. Chen
    Pages 211-266
  9. Nonlinear Effects

    • Francis F. Chen
    Pages 267-331
  10. Special Plasmas

    • Francis F. Chen
    Pages 333-353
  11. Plasma Applications

    • Francis F. Chen
    Pages 355-411
  12. Back Matter

    Pages 413-490

About this book

The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. 

In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, dusty plasmas, helicon plasmas, atmospheric-pressure plasmas, sheath-bounded plasmas, reconnection and turbulence.  Following this, chapter 10 describes Plasma Applications such as magnetic fusion (pinches, mirrors, FRCs, stellarators, tokamaks, spheromaks), plasma accelerators and FELs, ine

rtial fusion, semiconductor etching, and spacecraft propulsion.

This new revised edition remains an essential text for those new to the field and an invaluable reference source for established researchers.

Keywords

  • Controlled Fusion
  • Current Research in Plasma Physics
  • Diffusion and Resistivity
  • Fluid Equations for Plasmas
  • Introduction to Plasma Physics
  • Landau Damping
  • Plasma Applications
  • Plasma Instabilities and Nonlinear Problems
  • Plasma Physics Graduate-level Problems
  • Plasma Physics Textbook
  • Single-particle Motions
  • Special Plasmas
  • Wave Motions

Authors and Affiliations

  • Electrical Engineering, University of California at Los Angeles, Los Angeles, USA

    Francis F. Chen

About the author

Francis F. Chen, known as Frank in the physics community, got his B.A. from Harvard Observatory in 1950. His all-star oral committee consisted of famous astronomers Harlow Shapley, Bart J. Bok, Donald Menzel, and Earl Whipple. With pulsars and quasars still undiscovered, he switched to High Energy Physics, receiving his Ph.D. from Harvard in 1954. He had been sent by his adviser, Nobelist Norman Ramsey, to Brookhaven National Laboratory, where he worked on the Cosmotron and wrote the first experimental thesis for energies at or above 1 GeV. To avoid the Korean War draft, he then went to work for the astronomer Lyman Spitzer, Jr., who had just started the classified Project Matterhorn at Princeton University. This was one of four initial projects in the U.S. to tame the hydrogen bomb to make energy peacefully from the same reaction. In 1954, Chen was one of the first 15 employees at what is now the Princeton Plasma Physics Laboratory (PPPL). Project Matterhorn started in two old buildings, one formerly a rabbit hutch, and the other a horse operating room. Chen inherited the Model B1 Stellarator, built by James van Allen of the famous van Allen radiation belts around the earth. With the B1, Chen was the first to show that electrons could be trapped by a magnetic field for millions of traverses. By then, it was clear that fusion would require trapping a plasma, a hot, ionized gas of electrons and ions, and not just electrons. Subsequent Model B stellarators, however, failed to do this for longer than milliseconds. Realizing that stellarators were magnetic bottles that were curved and not straight, he convinced Spitzer to allow him to build straight machines to isolate the problem, even though these would have leaks at the ends. Chen then built the L-1 and L-2 machines with straight magnetic fields. Experiments on these showed that the plasma was lost by turbulence, and these random motions were aligned along the magnetic field, with wavelengths longer than any plasma waves known at that time. While on sabbatical in Paris, Chen figured out what these new waves were. They are now known as resistive drift waves and were discovered simultaneously in Russia by Sagdeev and Pogutse. In L-2, Chen and Mosher showed how this turbulence could be suppressed by magnetic fields that were not totally straight but had what is called shear. Modern magnetic bottles (called tokamaks), using advanced methods of stabilization, can hold a hot plasma for minutes. In 1969, Chen went from Princeton to UCLA in California, where he organized an academic program in plasma physics. He wrote the first undergraduate textbook in this field in 1973. Soon after, however, powerful lasers were invented, opening up a whole new field of research. Chen then left magnetic fusion to help start the field of laser fusion. He built the first laser at UCLA. In basic experiments, he and his students were among the first to study Brillouin and Raman scattering, two instabilities that cause problems even in laser-produced plasmas. This interesting field led to John Dawson’s discovery of plasma accelerators, which can shrink the size of machines for high-energy particle research by a factor of 1000! Chen recruited C. Joshi, whose experimental acumen has led his group to spectacular successes. Meanwhile, Chen left the effort to join yet another nascent field: low-temperature plasma physics. This involves partially ionized gases which include neutral atoms as well as ions and electrons. This complexity had led to its reputation as dirty science. By developing helicon plasma sources, which are magnetized, Chen showed that radiofrequency gas discharges contain very interesting physics which can be treated in a logical and interesting manner. Chen’s 57-year career in plasma physics can be divided into four approximately equal parts: magnetic fusion, laser fusion and laser accelerators, low-temperature plasma physics, and plasma diagnostics. In the last of these, Chen is an authority on the theory and use of Langmuir probes for local measurements of plasma density and electron temperature in different environments. He is the only physicist who has had significant publications in both theory and experiment in both the fields of magnetic and laser fusion. Outside of science, Chen enjoys the outdoors and is solicitous about the environment. He has been a pole-vaulter, soccer player and coach, backpacker, kayaker, and marathoner, and still plays tennis. He is a bird photographer, and he and his wife Ande have birded on all seven continents. She leads a bird and wildflower hike every weekend in the spring. They are concerned about the effect of climate change on wildlife species.

Bibliographic Information

  • Book Title: Introduction to Plasma Physics and Controlled Fusion

  • Authors: Francis F. Chen

  • DOI: https://doi.org/10.1007/978-3-319-22309-4

  • Publisher: Springer Cham

  • eBook Packages: Physics and Astronomy, Physics and Astronomy (R0)

  • Copyright Information: Springer International Publishing Switzerland 2016

  • Hardcover ISBN: 978-3-319-22308-7

  • Softcover ISBN: 978-3-319-79391-7

  • eBook ISBN: 978-3-319-22309-4

  • Edition Number: 3

  • Number of Pages: XII, 490

  • Number of Illustrations: 312 b/w illustrations

  • Topics: Plasma Physics, Nuclear Energy, Space Physics, Classical Electrodynamics

Buying options

eBook USD 59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-22309-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 74.99
Price excludes VAT (USA)
Hardcover Book USD 109.99
Price excludes VAT (USA)