Combinatorial Algebraic Geometry

Levico Terme, Italy 2013, Editors: Sandra Di Rocco, Bernd Sturmfels

  • Aldo Conca
  • Sandra Di Rocco
  • Jan Draisma
  • June Huh
  • Bernd Sturmfels
  • Filippo Viviani

Part of the Lecture Notes in Mathematics book series (LNM, volume 2108)

Also part of the C.I.M.E. Foundation Subseries book sub series (LNMCIME, volume 2108)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Aldo Conca
    Pages 1-31
  3. Jan Draisma
    Pages 33-61
  4. June Huh, Bernd Sturmfels
    Pages 63-117
  5. Sandra Di Rocco
    Pages 119-147
  6. Filippo Viviani
    Pages 149-239
  7. Back Matter
    Pages 241-242

About this book

Introduction

Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant theory, theta functions, and enumerative geometry. The aim of this volume is to introduce recent developments in combinatorial algebraic geometry and to approach algebraic geometry with a view towards applications, such as tensor calculus and algebraic statistics. A common theme is the study of algebraic varieties endowed with a
rich combinatorial structure. Relevant techniques include polyhedral geometry, free resolutions, multilinear algebra, projective duality and compactifications.

Keywords

11H55,13D02,13P25,14H10,14M25,16S37,52B20,62F10 Algebraic Statistics Equivariant Ideals Koszul Algebra Symmetric Manifolds Toric Varieties

Authors and affiliations

  • Aldo Conca
    • 1
  • Sandra Di Rocco
    • 2
  • Jan Draisma
    • 3
  • June Huh
    • 4
  • Bernd Sturmfels
    • 5
  • Filippo Viviani
    • 6
  1. 1.Dipartimento di MatematicaUniversità di GenovaGenovaItaly
  2. 2.Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands
  4. 4.Department of MathematicsUniversity of Michigan at Ann ArborAnn ArborUSA
  5. 5.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA
  6. 6.Dipartimento di MatematicaUniversità Roma TreRomaItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-04870-3
  • Copyright Information Springer International Publishing Switzerland 2014
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-04869-7
  • Online ISBN 978-3-319-04870-3
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book