Convolution Operators and Factorization of Almost Periodic Matrix Functions

  • Albrecht Böttcher
  • Yuri I. Karlovich
  • Ilya M. Spitkovsky

Part of the Operator Theory: Advances and Applications book series (OT, volume 131)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 1-25
  3. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 27-49
  4. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 51-68
  5. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 69-92
  6. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 93-106
  7. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 107-119
  8. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 121-130
  9. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 131-154
  10. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 155-179
  11. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 181-206
  12. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 207-225
  13. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 227-241
  14. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 243-258
  15. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 259-279
  16. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 281-299
  17. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 301-321
  18. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 323-336
  19. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 337-369
  20. Albrecht Böttcher, Yuri I. Karlovich, Ilya M. Spitkovsky
    Pages 371-386

About this book

Introduction

Many problems of the engineering sciences, physics, and mathematics lead to con­ volution equations and their various modifications. Convolution equations on a half-line can be studied by having recourse to the methods and results of the theory of Toeplitz and Wiener-Hopf operators. Convolutions by integrable kernels have continuous symbols and the Cauchy singular integral operator is the most prominent example of a convolution operator with a piecewise continuous symbol. The Fredholm theory of Toeplitz and Wiener-Hopf operators with continuous and piecewise continuous (matrix) symbols is well presented in a series of classical and recent monographs. Symbols beyond piecewise continuous symbols have discontinuities of oscillating type. Such symbols emerge very naturally. For example, difference operators are nothing but convolution operators with almost periodic symbols: the operator defined by (A

Keywords

convolution harmonic analysis operator operator theory transformation

Authors and affiliations

  • Albrecht Böttcher
    • 1
  • Yuri I. Karlovich
    • 2
  • Ilya M. Spitkovsky
    • 3
  1. 1.Faculty of MathematicsTechnical University ChemnitzChemnitzGermany
  2. 2.Department of MathematicsCINVESTAV of the I.P.N.Mexico D.F.Mexico
  3. 3.Department of MathematicsCollege of William and MaryWilliamsburgUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-0348-8152-4
  • Copyright Information Birkhäuser Verlag 2002
  • Publisher Name Birkhäuser, Basel
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-0348-9457-9
  • Online ISBN 978-3-0348-8152-4
  • About this book