Skip to main content

Machine Learning for Practical Decision Making

A Multidisciplinary Perspective with Applications from Healthcare, Engineering and Business Analytics

  • Textbook
  • © 2022

Overview

  • Provides real life examples in healthcare and business
  • Designed for novice reader with no technical background
  • Uses a hands-on approach that allows the reader to acquire a set of practical machine learning skills

Part of the book series: International Series in Operations Research & Management Science (ISOR, volume 334)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective that does not require a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics. The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines.

The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches.


Similar content being viewed by others

Keywords

Table of contents (16 chapters)

Authors and Affiliations

  • School of Health Policy and Management, York University, Toronto, Canada

    Christo El Morr

  • School of Information Technology, York University, Toronto, Canada

    Manar Jammal

  • Department of International Studies, York University, Glendon Campus, Toronto, Canada

    Hossam Ali-Hassan

  • Ontario Health, Toronto, Canada

    Walid EI-Hallak

About the authors

Christo El Morr, PhD is an Associate Professor of Health Informatics at the School of Health Policy and Management, York University, Canada. He is also a Research Scientist at North York General Hospital, Toronto, Canada. His research subscribes to an Equity Informatics perspective; it covers Patient-Centered Virtual Care (e.g., chronic disease management, mental health), Global Health Promotion for equity (e.g., equity health promotion), Human Rights Monitoring (e.g., disability rights, Gender-Based Violence), and Equity AI (e.g., patient readmission, disability advocacy).

Manar Jammal, PhD is an Assistant Professor at the School of Information Technology, York University, Canada. Her work focuses on developing cutting-edge data analytics techniques and innovative machine learning models in the areas of networking, 5G systems, IoT, and cloud computing. Her research interests include machine learning, software engineering and modeling, distributed systems, cloud computing, network function virtualization, 5G systems, IoT, data analytics, high availability, and software-defined networks.

Hossam Ali-Hassan, PhD is an Associate Professor of Information Systems and Chair of International Studies at York University, Glendon campus, Toronto, Canada. Prior to his academic career, he worked for many years as a network specialist and information technology consultant. He currently teaches a variety of courses at York University such as information systems, business analytics, and supply chain management technology. His research interests include business analytics, data literacy, data visualization, experiential learning, social media, social capital, and job performance.

Walid El-Hallak, BSc Hons is a Lead Developer at Ontario Health, Canada. With 16 years of healthcare consulting experience in the public and private sectors, he is specialized in integrating clinical systems using healthcare standards such as HL7, IHE and DICOM. He has implementedcomplex province-wide eHealth projects such as the Diagnostic Imaging Network for Northern and Eastern Ontario. Holding a BSc Hons in computer science specialisation Bioinformatics. He has also developed statistical models for biological motif sequence discovery.

 


Bibliographic Information

Publish with us