Overview
- Describes traditional as well as advanced machine learning algorithms
- Enables students to learn which algorithm is most appropriate for the data being handled
- Includes numerous, practical case-studies; implementation codes in Python available for readers
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve. In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases. Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications.
Similar content being viewed by others
Keywords
Table of contents (13 chapters)
-
Basics of Machine Learning
-
Advanced Machine Learning
Authors and Affiliations
About the authors
Setareh Rafatirad is an Associate Professor in Department of Information Sciences and Technology at George Mason University. She obtained her M.Sc. and PhD in Computer Science from University of California, Irvine in 2009 and 2012. Her research interest covers several areas including Big Data Analytics, Data Mining, Knowledge Discovery and Knowledge Representation, Image Understanding, Multimedia Information Retrieval, and Applied Machine Learning. Currently, she is actively supervising multiple research projects focused on applying ML and Deep Learning techniques on different domains including House Price Prediction, Malware Detection, and Emerging big data application benchmarking and characterization on heterogeneous architectures.
Houman Homayoun is anAssistant Professor in the Department of Electrical and Computer Engineering at George Mason University. He also holds a courtesy appointment with the Department of Computer Science as well as Information Science and Technology Department. Houman joined GMU as a tenure-track Assistant Professor in August 2012. Prior to joining GMU, Houman spent two years at the University of California, San Diego, as NSF Computing Innovation (CI) Fellow awarded by the CRA-CCC working with Professor Dean Tullsen. Houman graduated in 2010 from University of California, Irvine with a Ph.D. in Computer Science. He was a recipient of the four-year University of California, Irvine Computer Science Department chair fellowship. His dissertation, entitled “Beyond Memory Cells for Leakage and Temperature Control in SRAM-based Units, the Peripheral Circuits Story”, was supervised by Professor Alex Veidenbaum from CS Department, and Professor Jean-Luc Gaudiot, and Professor Fadi Kurdahi from ECE Department. Out ofthirty-one doctoral dissertations his work was nominated for 2010 ACM Doctoral Dissertation Award. Houman received the MS degree in computer engineering in 2005 from University of Victoria and BS degree in electrical engineering in 2003 from Sharif University of Technology. Houman conduct research in big data computing, heterogeneous computing and hardware security and trust, which spans the areas of computer design and embedded systems, where he has published more than 80 technical papers in the prestigious conferences and journals on the subject. He is currently leading six research projects funded by DARPA, AFRL and NSF on the topics of hardware security and trust, big data computing, heterogeneous architectures, and biomedical computing. Houman received the 2016 GLSVLSI conference best paper award for developing a manycore accelerator for wearable biomedical computing. Houman is currently serving as Member of Advisory Committee, Cybersecurity Research and Technology Commercialization (R&TC) working group in the Commonwealth of Virginia. Since 2017 he has been serving as an Associate Editor of IEEE Transactions on VLSI. He served as TPC Co-Chair for GLSVLSI 2018. He is currently the general chair of GLSVLSI 2019.
Bibliographic Information
Book Title: Machine Learning for Computer Scientists and Data Analysts
Book Subtitle: From an Applied Perspective
Authors: Setareh Rafatirad, Houman Homayoun, Zhiqian Chen, Sai Manoj Pudukotai Dinakarrao
DOI: https://doi.org/10.1007/978-3-030-96756-7
Publisher: Springer Cham
eBook Packages: Engineering, Engineering (R0)
Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Hardcover ISBN: 978-3-030-96755-0Published: 10 July 2022
Softcover ISBN: 978-3-030-96758-1Published: 10 July 2023
eBook ISBN: 978-3-030-96756-7Published: 09 July 2022
Edition Number: 1
Number of Pages: XV, 458
Number of Illustrations: 17 b/w illustrations, 140 illustrations in colour
Topics: Circuits and Systems, Cyber-physical systems, IoT, Machine Learning