Skip to main content

Machine Learning and Knowledge Discovery in Databases

European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part I

  • Conference proceedings
  • © 2021

Overview

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 12457)

Part of the book sub series: Lecture Notes in Artificial Intelligence (LNAI)

Included in the following conference series:

Conference proceedings info: ECML PKDD 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic.

The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings.

The volumes are organized in topical sections as follows:

Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion.

Part II: deep learning optimization and theory;active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning.

Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics.

Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data.

Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.

 

 

Similar content being viewed by others

Keywords

Table of contents (43 papers)

  1. Pattern Mining

  2. Clustering

  3. Privacy and Fairness

  4. (Social) Network Analysis and Computational Social Science

Editors and Affiliations

  • Albert-Ludwigs-Universität, Freiburg, Germany

    Frank Hutter

  • TU Darmstadt, Darmstadt, Germany

    Kristian Kersting

  • Ghent University, Ghent, Belgium

    Jefrey Lijffijt

  • Saarland University, Saarbrücken, Germany

    Isabel Valera

Bibliographic Information

Publish with us