Skip to main content

Progress in Information Geometry

Theory and Applications

  • Book
  • © 2021

Overview

  • Features new and fruitful interactions between several branches of science: information science, mathematics and physics
  • Offers a substantial information source for industry and academia
  • Collects the most important contributions to the conference GSI’2019 – Geometric Science of Information

Part of the book series: Signals and Communication Technology (SCT)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book focuses on information-geometric manifolds of structured data and models and related applied mathematics. It features new and fruitful interactions between several branches of science: Advanced Signal/Image/Video Processing, Complex Data Modeling and Analysis, Statistics on Manifolds, Topology/Machine/Deep Learning and Artificial Intelligence. The selection of applications makes the book a substantial information source, not only for academic scientist but it is also highly relevant for industry. 

The book project was initiated following discussions at the international conference GSI’2019 – Geometric Science of Information that was held at ENAC, Toulouse (France).


Similar content being viewed by others

Keywords

Table of contents (10 chapters)

Editors and Affiliations

  • Sony Computer Science Laboratories, Inc., Tokyo, Japan

    Frank Nielsen

About the editor

Frank Nielsen is Senior Researcher at Sony Computer Science Laboratories Inc, Tokyo, Japan and a fellow of the European Laboratory for Learning and Intelligent Systems (ELLIS). He taught at Ecole Polytechnique (Palaiseau, France) visual computing and high performance computing (HPC) for data science. His research aims at understanding the nature and structure of information and variability in data and exploiting algorithmically this knowledge in innovative imaging and machine learning applications. For that purpose, he coined the field of computational information geometry (computational differential geometry) to extract information as regular structures while taking into account variability in datasets by grounding them in geometric spaces. Geometry beyond Euclidean spaces has a long history of revolutionizing the way we perceived reality. Curved spacetime geometry sustained relativity theory and fractal geometry unveiled the scale-free properties of nature. In the digital world, geometry is data-driven and allows intrinsic data analytics by capturing the very essence of data through invariance principles without being biased by any particular data representation. He is an editor of the journal Entropy (MDPI) and of the journal Information Geometry (INGE, Springer), and co-organize the biannual internation conference on the Geometric Sciences of Information (GSI).

Bibliographic Information

Publish with us