Skip to main content

Antihydrogen and Fundamental Physics

  • Book
  • © 2020

Overview

  • Examines the fundamental physics motivations for the CERN antihydrogen programme
  • Presents an accessible review of the role of antimatter in quantum field theory and general relativity
  • Offers a state-of-the-art account of experimental results on antihydrogen spectroscopy

Part of the book series: SpringerBriefs in Physics (SpringerBriefs in Physics)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

The advent of high-precision antihydrogen spectroscopy has opened up the possibility of direct tests with unprecedented accuracy of some of the most fundamental principles of physics, notably Lorentz and CPT symmetry and the Einstein equivalence principle.
This book reviews these principles, emphasising their interconnections in quantum field theory and general relativity and the special role of antimatter, and explores how they may be tested in current and forthcoming experiments on antihydrogen. Original research results relevant to the experimental programme of the ALPHA collaboration at CERN are presented, together with the implications for antihydrogen of proposed theories featuring novel `fifth-force' interactions.


Authors and Affiliations

  • Department of Physics, College of Science, Swansea University, Swansea, UK

    Michael Charlton, Stefan Eriksson, Graham M. Shore

About the authors

Michael Charlton, B.Sc., Ph.D. (London), FInstP MAE FLSW, is a Professor of Experimental Physics at Swansea University.  He has held Research Fellowships at UCL, Aarhus and Swansea. He is well known for his work with antimatter at low energies, and he was a pioneer in the field of antihydrogen physics. He is the current Vice President (STEMM) of the Learned Society of Wales.

Stefan Eriksson, MSc, PhD (University of Helsinki) is Professor of Physics at Swansea University. He has held a Leverhulme Trust Research Fellowship and a research position at Imperial College. He is well-known for his work in atomic physics and is a senior member of the ALPHA collaboration at CERN.

Graham M. Shore, B.Sc. (Edin), Ph.D. (CANTAB), FLSW, is Emeritus Professor of Theoretical Physics at Swansea University. He has held research positions at Harvard, Cornell, Imperial College, Bern, Geneva, and CERN. He has worked extensively on quantum field theory in curvedspacetime and its applications to fundamental particle physics and cosmology.

Bibliographic Information

Publish with us