Skip to main content
  • Book
  • © 2019

A New Generation of High-Power, Waveform Controlled, Few-Cycle Light Sources

Authors:

  • Nominated as an outstanding Ph.D. thesis by the Max Planck Institute of Quantum Optics, Garching, Germany
  • Readily understable introduction to the field
  • Fully illustrated with extensive reference list

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (5 chapters)

  1. Front Matter

    Pages i-xviii
  2. Introduction

    • Marcus Seidel
    Pages 1-35
  3. Power Scalable Concepts

    • Marcus Seidel
    Pages 75-152
  4. From the Near- to the Mid-Infrared

    • Marcus Seidel
    Pages 153-200
  5. Outlook and Conclusions

    • Marcus Seidel
    Pages 201-211
  6. Back Matter

    Pages 213-227

About this book

This thesis presents first successful experiments to carrier-envelope-phase stabilize a high-power mode-locked thin-disk oscillator and to compress the pulses emitted from this laser to durations of only a few-optical cycles. Moreover, the monograph introduces several methods to achieve power-scalability of compression and stabilization techniques. All experimental approaches are compared in detail and may serve as a guideline for developing high-power waveform controlled, few-cycle light sources which offer tremendous potential to exploit extreme nonlinear optical effects at unprecedentedly high repetition rates and to establish table-top infrared light sources with a unique combination of brilliance and bandwidth. As an example, the realization of a multi-Watt, multi-octave spanning, mid-infrared femtosecond source is described. The thesis starts with a basic introduction to the field of ultrafast laser oscillators. It subsequently presents additional details of previously published research results and establishes a connection between them. It therefore addresses both newcomers to, and experts in the field of high-power ultrafast laser development.

Authors and Affiliations

  • Institut de Science et d’Ingénierie Supramoléculaires, Strasbourg, France

    Marcus Seidel

About the author

Marcus Seidel was born in Marienberg, Germany, in 1986. He studied physics at the Free University of Berlin, Germany, and the University of Rostock, Germany, from where he received his Diploma in Physics in 2012. Additionally, he obtained an M.Sc. degree in optics and photonics from the University of Central Florida in 2011. From 2012 to 2017, he conducted his PhD work at the Max-Planck Institute of Quantum Optics (MPQ) in Garching, Germany. Since mid-2017, he has been working as a postdoc in the Nanostructures Laboratory at the Institut de Science et d'Ingénierie Supramoléculaires (I.S.I.S.) in Strasbourg, France.

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access