Advertisement

Fibre Bundles

  • Dale Husemoller

Part of the Graduate Texts in Mathematics book series (GTM, volume 20)

Table of contents

  1. Front Matter
    Pages i-xix
  2. Preliminaries on Homotopy Theory

    1. Dale Husemoller
      Pages 1-8
  3. The General Theory of Fibre Bundles

    1. Front Matter
      Pages 9-9
    2. Dale Husemoller
      Pages 11-23
    3. Dale Husemoller
      Pages 24-39
    4. Dale Husemoller
      Pages 40-60
    5. Dale Husemoller
      Pages 61-72
    6. Dale Husemoller
      Pages 73-78
    7. Dale Husemoller
      Pages 79-86
    8. Dale Husemoller
      Pages 87-107
  4. Elements of K-Theory

    1. Front Matter
      Pages 109-109
    2. Dale Husemoller
      Pages 111-121
    3. Dale Husemoller
      Pages 122-139
    4. Dale Husemoller
      Pages 140-150
    5. Dale Husemoller
      Pages 151-170
    6. Dale Husemoller
      Pages 171-188
    7. Dale Husemoller
      Pages 189-209
    8. Dale Husemoller
      Pages 210-216
    9. Dale Husemoller
      Pages 217-242
  5. Characteristic Classes

    1. Front Matter
      Pages 243-243
    2. Dale Husemoller
      Pages 245-261
    3. Dale Husemoller
      Pages 262-279
    4. Dale Husemoller
      Pages 280-293
    5. Dale Husemoller
      Pages 294-311
  6. Back Matter
    Pages 312-355

About this book

Introduction

Fibre bundles play an important role in just about every aspect of modern geometry and topology. Basic properties, homotopy classification, and characteristic classes of fibre bundles have become an essential part of graduate mathematical education for students in geometry and mathematical physics. In this third edition two new chapters on the gauge group of a bundle and on the differential forms representing characteristic classes of complex vector bundles on manifolds have been added. These chapters result from the important role of the gauge group in mathematical physics and the continual usefulness of characteristic classes defined with connections on vector bundles.

Keywords

Adams operation Characteristic class Chern class Faserbündel Homotopy K-theory homotopy theory vector bundle

Authors and affiliations

  • Dale Husemoller
    • 1
  1. 1.Department of MathematicsHaverford CollegeHaverfordUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4757-2261-1
  • Copyright Information Springer-Verlag New York 1994
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4757-2263-5
  • Online ISBN 978-1-4757-2261-1
  • Series Print ISSN 0072-5285
  • Buy this book on publisher's site