Basic Topology

  • M. A. Armstrong

Part of the Undergraduate Texts in Mathematics book series (UTM)

Table of contents

  1. Front Matter
    Pages i-xii
  2. M. A. Armstrong
    Pages 1-26
  3. M. A. Armstrong
    Pages 27-42
  4. M. A. Armstrong
    Pages 43-64
  5. M. A. Armstrong
    Pages 65-86
  6. M. A. Armstrong
    Pages 87-117
  7. M. A. Armstrong
    Pages 119-148
  8. M. A. Armstrong
    Pages 149-171
  9. M. A. Armstrong
    Pages 173-193
  10. M. A. Armstrong
    Pages 195-212
  11. M. A. Armstrong
    Pages 213-239
  12. Back Matter
    Pages 241-254

About this book

Introduction

In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject.

Keywords

Algebraic topology Basic Fundamental group Topologie Topology group theory homology topological invariant

Authors and affiliations

  • M. A. Armstrong
    • 1
  1. 1.Department of MathematicsUniversity of DurhamDurhamEngland

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4757-1793-8
  • Copyright Information Springer-Verlag New York 1983
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4419-2819-1
  • Online ISBN 978-1-4757-1793-8
  • Series Print ISSN 0172-6056
  • About this book