Mathematical Logic

  • J. Donald Monk

Part of the Graduate Texts in Mathematics book series (GTM, volume 37)

Table of contents

  1. Front Matter
    Pages i-x
  2. Introduction

    1. J. Donald Monk
      Pages 1-9
  3. Recursive Function Theory

    1. Front Matter
      Pages 11-13
    2. J. Donald Monk
      Pages 14-25
    3. J. Donald Monk
      Pages 45-68
    4. J. Donald Monk
      Pages 69-75
    5. J. Donald Monk
      Pages 76-91
    6. J. Donald Monk
      Pages 92-104
    7. J. Donald Monk
      Pages 105-111
  4. Elements of Logic

    1. Front Matter
      Pages 113-114
    2. J. Donald Monk
      Pages 115-140
    3. J. Donald Monk
      Pages 141-161
    4. J. Donald Monk
      Pages 162-193
    5. J. Donald Monk
      Pages 194-218
    6. J. Donald Monk
      Pages 219-229
  5. Decidable and Undecidable Theories

    1. Front Matter
      Pages 231-232
    2. J. Donald Monk
      Pages 233-243
    3. J. Donald Monk
      Pages 244-261
    4. J. Donald Monk
      Pages 262-278

About this book


From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data."

There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.


Logic Mathematica Turing algorithms boundary element method computability theory construction decidability functions mathematical analysis mathematical logic model theory recursion turing degree types

Authors and affiliations

  • J. Donald Monk
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoBoulderUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag New York 1976
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4684-9454-9
  • Online ISBN 978-1-4684-9452-5
  • Series Print ISSN 0072-5285
  • About this book