Advertisement

A Hilbert Space Problem Book

  • Authors
  • Paul R. Halmos

Part of the Graduate Texts in Mathematics book series (GTM, volume 19)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Problems

    1. Front Matter
      Pages 1-1
    2. Paul R. Halmos
      Pages 3-8
    3. Paul R. Halmos
      Pages 9-11
    4. Paul R. Halmos
      Pages 12-16
    5. Paul R. Halmos
      Pages 17-22
    6. Paul R. Halmos
      Pages 23-26
    7. Paul R. Halmos
      Pages 27-32
    8. Paul R. Halmos
      Pages 33-37
    9. Paul R. Halmos
      Pages 38-40
    10. Paul R. Halmos
      Pages 41-43
    11. Paul R. Halmos
      Pages 44-46
    12. Paul R. Halmos
      Pages 47-53
    13. Paul R. Halmos
      Pages 54-58
    14. Paul R. Halmos
      Pages 59-62
    15. Paul R. Halmos
      Pages 63-65
    16. Paul R. Halmos
      Pages 66-73
    17. Paul R. Halmos
      Pages 74-76
    18. Paul R. Halmos
      Pages 77-85
    19. Paul R. Halmos
      Pages 86-89
    20. Paul R. Halmos
      Pages 90-97
    21. Paul R. Halmos
      Pages 98-102
    22. Paul R. Halmos
      Pages 103-111
    23. Paul R. Halmos
      Pages 112-119
    24. Paul R. Halmos
      Pages 120-127
    25. Paul R. Halmos
      Pages 128-134
    26. Paul R. Halmos
      Pages 135-140
  3. Hints

    1. Front Matter
      Pages 141-141
    2. Paul R. Halmos
      Pages 143-143
    3. Paul R. Halmos
      Pages 143-144
    4. Paul R. Halmos
      Pages 144-145
    5. Paul R. Halmos
      Pages 145-146
    6. Paul R. Halmos
      Pages 146-147
    7. Paul R. Halmos
      Pages 147-147
    8. Paul R. Halmos
      Pages 148-148
    9. Paul R. Halmos
      Pages 148-149
    10. Paul R. Halmos
      Pages 149-149
    11. Paul R. Halmos
      Pages 149-150
    12. Paul R. Halmos
      Pages 150-151
    13. Paul R. Halmos
      Pages 151-151
    14. Paul R. Halmos
      Pages 152-152
    15. Paul R. Halmos
      Pages 152-153
    16. Paul R. Halmos
      Pages 153-154
    17. Paul R. Halmos
      Pages 154-154
    18. Paul R. Halmos
      Pages 154-156
    19. Paul R. Halmos
      Pages 156-157
    20. Paul R. Halmos
      Pages 157-158
    21. Paul R. Halmos
      Pages 158-158
    22. Paul R. Halmos
      Pages 159-160
    23. Paul R. Halmos
      Pages 160-161

About this book

Introduction

From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem....

This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Keywords

Finite Hilbertscher Raum Isometrie Space Topology function proof

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4684-9330-6
  • Copyright Information Springer-Verlag New York 1982
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4684-9332-0
  • Online ISBN 978-1-4684-9330-6
  • Series Print ISSN 0072-5285
  • Buy this book on publisher's site