Skip to main content

Shape Optimization by the Homogenization Method

  • Textbook
  • © 2002


Part of the book series: Applied Mathematical Sciences (AMS, volume 146)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 9.99 USD 84.99
Discount applied Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

The topic of this book is homogenization theory and its applications to optimal design in the conductivity and elasticity settings. Its purpose is to give a self-contained account of homogenization theory and explain how it applies to solving optimal design problems, from both a theoretical and a numerical point of view. The application of greatest practical interest tar­ geted by this book is shape and topology optimization in structural design, where this approach is known as the homogenization method. Shape optimization amounts to finding the optimal shape of a domain that, for example, would be of maximal conductivity or rigidity under some specified loading conditions (possibly with a volume or weight constraint). Such a criterion is embodied by an objective function and is computed through the solution of astate equation that is a partial differential equa­ tion (modeling the conductivity or the elasticity of the structure). Apart from those areas where the loads are applied, the shape boundary is al­ ways assumed to support Neumann boundary conditions (i. e. , isolating or traction-free conditions). In such a setting, shape optimization has a long history and has been studied by many different methods. There is, therefore, a vast literat ure in this field, and we refer the reader to the following short list of books, and references therein [39], [42], [130], [135], [149], [203], [220], [225], [237], [245], [258].

Similar content being viewed by others


Table of contents (5 chapters)


From the reviews:

"The book is a research monograph, but the structure and completeness of the presentation means that the book constitutes a good basis for a graduate course in applied mathematics. The rigorous mathematical presentation is supplemented with numerous remarks and comments which discuss the subject in broader terms, greatly simplifying the reading process. … The book is a welcome and up-to-date addition to the literature in the area and it is necessary reading for any researcher and student …" (M.P. Bendsøe, Structural Multidisciplinary Optimization, 5, 2002)

"The book is very well structured, very clearly written, very well motivated, and complete in its treatment of modelling, analysis and simulation. It will be a basic reference for whoever wants to deeply understand homogenization from the point of view of its application to optimal design. The treatment is right to the point, a quality that is very much appreciated by readers. In summary, I believe this text may become a main source for the subject of optimal design and shape optimization." (Pablo Pedregal, Mathematical Reviews, 2002 h)

"The book under review presents a comprehensive introduction to the homogenisation method applied to optimal design, including many proofs which were hitherto only scattered throughout the literature … this one provides the most complete treatment of numerical methods … A number of realistic examples, mostly for elasticity, has been developed in detail. … In summary, we would like to warmly recommend this book to anybody working in optimal shape design, composites and homogenisation, as well to those who wish to enter these fields." (Nenad Antonic and Marko Vrdoljak, Zentralblatt MATH, 990:15, 2002)

Authors and Affiliations

  • Centre of Applied Mathematics, Ecole Polytechnique, Paliseau Cedex, France

    Grégoire Allaire

Bibliographic Information

Publish with us