A Hilbert Space Problem Book

  • P. R. Halmos

Part of the Graduate Texts in Mathematics book series (GTM, volume 19)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Problems

    1. Front Matter
      Pages 1-1
    2. P. R. Halmos
      Pages 3-9
    3. P. R. Halmos
      Pages 10-14
    4. P. R. Halmos
      Pages 15-20
    5. P. R. Halmos
      Pages 21-23
    6. P. R. Halmos
      Pages 24-28
    7. P. R. Halmos
      Pages 29-33
    8. P. R. Halmos
      Pages 34-36
    9. P. R. Halmos
      Pages 37-39
    10. P. R. Halmos
      Pages 40-43
    11. P. R. Halmos
      Pages 44-51
    12. P. R. Halmos
      Pages 52-54
    13. P. R. Halmos
      Pages 55-59
    14. P. R. Halmos
      Pages 60-70
    15. P. R. Halmos
      Pages 71-83
    16. P. R. Halmos
      Pages 84-97
    17. P. R. Halmos
      Pages 98-107
    18. P. R. Halmos
      Pages 108-117
    19. P. R. Halmos
      Pages 118-125

About this book

Introduction

From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem....

This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Keywords

Compact operator Convexity Eigenvalue Hilbert space Hilbertscher Raum Space analytic function compactness convergence integration maximum measure metric space minimum operator

Authors and affiliations

  • P. R. Halmos
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4615-9976-0
  • Copyright Information Springer-Verlag New York 1974
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4615-9978-4
  • Online ISBN 978-1-4615-9976-0
  • Series Print ISSN 0072-5285
  • About this book