Advertisement

A Hilbert Space Problem Book

  • P. R. Halmos

Part of the Graduate Texts in Mathematics book series (GTM, volume 19)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Problems

    1. Front Matter
      Pages 1-1
    2. P. R. Halmos
      Pages 3-9
    3. P. R. Halmos
      Pages 10-14
    4. P. R. Halmos
      Pages 15-20
    5. P. R. Halmos
      Pages 21-23
    6. P. R. Halmos
      Pages 24-28
    7. P. R. Halmos
      Pages 29-33
    8. P. R. Halmos
      Pages 34-36
    9. P. R. Halmos
      Pages 37-39
    10. P. R. Halmos
      Pages 40-43
    11. P. R. Halmos
      Pages 44-51
    12. P. R. Halmos
      Pages 52-54
    13. P. R. Halmos
      Pages 55-59
    14. P. R. Halmos
      Pages 60-70
    15. P. R. Halmos
      Pages 71-83
    16. P. R. Halmos
      Pages 84-97
    17. P. R. Halmos
      Pages 98-107
    18. P. R. Halmos
      Pages 108-117
    19. P. R. Halmos
      Pages 118-125
    20. P. R. Halmos
      Pages 126-134
    21. P. R. Halmos
      Pages 135-140
  3. Hint

    1. Front Matter
      Pages 141-141
    2. P. R. Halmos
      Pages 143-143
    3. P. R. Halmos
      Pages 144-145
    4. P. R. Halmos
      Pages 145-146
    5. P. R. Halmos
      Pages 146-146
    6. P. R. Halmos
      Pages 146-147
    7. P. R. Halmos
      Pages 147-148
    8. P. R. Halmos
      Pages 148-149
    9. P. R. Halmos
      Pages 149-149
    10. P. R. Halmos
      Pages 149-150
    11. P. R. Halmos
      Pages 150-151
    12. P. R. Halmos
      Pages 151-152
    13. P. R. Halmos
      Pages 152-152
    14. P. R. Halmos
      Pages 152-154
    15. P. R. Halmos
      Pages 154-156
    16. P. R. Halmos
      Pages 156-158
    17. P. R. Halmos
      Pages 158-160
    18. P. R. Halmos
      Pages 160-161
    19. P. R. Halmos
      Pages 161-162
    20. P. R. Halmos
      Pages 162-163
    21. P. R. Halmos
      Pages 163-164
  4. Solutions

    1. Front Matter
      Pages 165-165
    2. P. R. Halmos
      Pages 167-177
    3. P. R. Halmos
      Pages 178-186
    4. P. R. Halmos
      Pages 187-200
    5. P. R. Halmos
      Pages 201-203
    6. P. R. Halmos
      Pages 204-208
    7. P. R. Halmos
      Pages 209-217

About this book

Introduction

From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem....

This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."

Keywords

Compact operator Convexity Eigenvalue Hilbert space Hilbertscher Raum Space analytic function compactness convergence integration maximum measure metric space minimum operator

Authors and affiliations

  • P. R. Halmos
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4615-9976-0
  • Copyright Information Springer-Verlag New York 1974
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4615-9978-4
  • Online ISBN 978-1-4615-9976-0
  • Series Print ISSN 0072-5285
  • Buy this book on publisher's site