Coxeter Graphs and Towers of Algebras

  • Frederick M. Goodman
  • Pierre de la Harpe
  • Vaughan F. R. Jones

Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 14)

Table of contents

  1. Front Matter
    Pages i-x
  2. Frederick M. Goodman, Pierre de la Harpe, Vaughan F. R. Jones
    Pages 1-27
  3. Frederick M. Goodman, Pierre de la Harpe, Vaughan F. R. Jones
    Pages 28-127
  4. Frederick M. Goodman, Pierre de la Harpe, Vaughan F. R. Jones
    Pages 128-181
  5. Frederick M. Goodman, Pierre de la Harpe, Vaughan F. R. Jones
    Pages 182-231
  6. Back Matter
    Pages 232-288

About this book

Introduction

A recent paper on subfactors of von Neumann factors has stimulated much research in von Neumann algebras. It was discovered soon after the appearance of this paper that certain algebras which are used there for the analysis of subfactors could also be used to define a new polynomial invariant for links. Recent efforts to understand the fundamental nature of the new link invariants has led to connections with invariant theory, statistical mechanics and quantum theory. In turn, the link invariants, the notion of a quantum group, and the quantum Yang-Baxter equation have had a great impact on the study of subfactors. Our subject is certain algebraic and von Neumann algebraic topics closely related to the original paper. However, in order to promote, in a modest way, the contact between diverse fields of mathematics, we have tried to make this work accessible to the broadest audience. Consequently, this book contains much elementary expository material.

Keywords

Dimension Factor Invariant Microsoft Access algebra equation finite group graphs group invariant theory mathematics matrices matrix mechanics polynomial

Authors and affiliations

  • Frederick M. Goodman
    • 1
  • Pierre de la Harpe
    • 2
  • Vaughan F. R. Jones
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA
  2. 2.Section de MathématiquesUniversité de GenèveGenève 24Switzerland
  3. 3.Department of MathematicsUniversity of California - BerkeleyBerkeleyUSA
  4. 4.Mathematical Sciences Research InstituteBerkeleyUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4613-9641-3
  • Copyright Information Springer-Verlag New York 1989
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4613-9643-7
  • Online ISBN 978-1-4613-9641-3
  • Series Print ISSN 0940-4740
  • About this book