Skip to main content
  • Book
  • © 1985

Arithmetic Functions and Integer Products

Part of the book series: Grundlehren der mathematischen Wissenschaften (GL, volume 272)

Buying options

eBook USD 59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4613-8548-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 79.99
Price excludes VAT (USA)

This is a preview of subscription content, access via your institution.

Table of contents (25 chapters)

  1. Front Matter

    Pages i-xv
  2. Introduction

    1. Introduction

      • P. D. T. A. Elliott
      Pages 1-17
  3. First Motive

    1. Front Matter

      Pages 19-21
    2. Variants of Well-Known Arithmetic Inequalities

      • P. D. T. A. Elliott
      Pages 23-36
    3. A Diophantine Equation

      • P. D. T. A. Elliott
      Pages 37-52
    4. A First Upper Bound

      • P. D. T. A. Elliott
      Pages 53-77
    5. Intermezzo: The Group Q*/Γ

      • P. D. T. A. Elliott
      Pages 78-80
    6. Some Duality

      • P. D. T. A. Elliott
      Pages 81-95
  4. Second Motive

    1. Front Matter

      Pages 97-100
    2. Lemmas Involving Prime Numbers

      • P. D. T. A. Elliott
      Pages 101-120
    3. The Loop

      • P. D. T. A. Elliott
      Pages 155-175
  5. Third Motive

    1. Front Matter

      Pages 177-181
    2. The Approximate Functional Equation

      • P. D. T. A. Elliott
      Pages 183-203
    3. Additive Arithmetic Functions on Differences

      • P. D. T. A. Elliott
      Pages 204-243
    4. Some Historical Remarks

      • P. D. T. A. Elliott
      Pages 244-249
    5. From L 2 to L ∞

      • P. D. T. A. Elliott
      Pages 250-258
    6. A Problem of Kátai

      • P. D. T. A. Elliott
      Pages 259-263
    7. Inequalities in L∞

      • P. D. T. A. Elliott
      Pages 264-276
    8. Integers as Products

      • P. D. T. A. Elliott
      Pages 277-290

About this book

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non­ negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func­ tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Keywords

  • Arithmetic
  • Functions
  • Lemma
  • Prime
  • Prime number
  • algebra
  • number theory

Authors and Affiliations

  • Department of Mathematics, University of Colorado, Boulder, USA

    P. D. T. A. Elliott

Bibliographic Information

  • Book Title: Arithmetic Functions and Integer Products

  • Authors: P. D. T. A. Elliott

  • Series Title: Grundlehren der mathematischen Wissenschaften

  • DOI: https://doi.org/10.1007/978-1-4613-8548-6

  • Publisher: Springer New York, NY

  • eBook Packages: Springer Book Archive

  • Copyright Information: Springer-Verlag New York Inc. 1985

  • Hardcover ISBN: 978-0-387-96094-4

  • Softcover ISBN: 978-1-4613-8550-9

  • eBook ISBN: 978-1-4613-8548-6

  • Series ISSN: 0072-7830

  • Series E-ISSN: 2196-9701

  • Edition Number: 1

  • Number of Pages: 461

  • Topics: Number Theory

Buying options

eBook USD 59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4613-8548-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 79.99
Price excludes VAT (USA)