Advertisement

Theorems and Problems in Functional Analysis

  • A. A. Kirillov
  • A. A. Gvishiani

Part of the Problem Books in Mathematics book series (PBM)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Theory

    1. Front Matter
      Pages 1-1
    2. A. A. Kirillov, A. A. Gvishiani
      Pages 3-11
    3. A. A. Kirillov, A. A. Gvishiani
      Pages 12-37
    4. A. A. Kirillov, A. A. Gvishiani
      Pages 38-94
    5. A. A. Kirillov, A. A. Gvishiani
      Pages 95-115
    6. A. A. Kirillov, A. A. Gvishiani
      Pages 116-135
  3. Problems

    1. Front Matter
      Pages 137-137
    2. A. A. Kirillov, A. A. Gvishiani
      Pages 139-149
    3. A. A. Kirillov, A. A. Gvishiani
      Pages 150-169
    4. A. A. Kirillov, A. A. Gvishiani
      Pages 170-203
    5. A. A. Kirillov, A. A. Gvishiani
      Pages 204-218
    6. A. A. Kirillov, A. A. Gvishiani
      Pages 219-230
  4. Hints

    1. Front Matter
      Pages 231-231
    2. A. A. Kirillov, A. A. Gvishiani
      Pages 233-243
    3. A. A. Kirillov, A. A. Gvishiani
      Pages 244-270
    4. A. A. Kirillov, A. A. Gvishiani
      Pages 271-308
    5. A. A. Kirillov, A. A. Gvishiani
      Pages 309-324
    6. A. A. Kirillov, A. A. Gvishiani
      Pages 325-334
  5. Back Matter
    Pages 335-347

About this book

Introduction

Even the simplest mathematical abstraction of the phenomena of reality­ the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe­ matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.

Keywords

Convexity Fourier series Funktionalanalysis Funktionalanalysis /Aufgabensammlung Hilbert space Theorems calculus convolution differential equation functional analysis spectral theorem

Authors and affiliations

  • A. A. Kirillov
    • 1
  • A. A. Gvishiani
    • 2
  1. 1.Mathemathics DepartmentMoscow State UniversityMoscowUSSR
  2. 2.Applied Mathemathics LaboratoryInstitute of Earth Physics of the Academy of Sciences of the USSRMoscowUSSR

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4613-8153-2
  • Copyright Information Springer-Verlag New York Inc. 1982
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4613-8155-6
  • Online ISBN 978-1-4613-8153-2
  • Series Print ISSN 0941-3502
  • Series Online ISSN 2197-8506
  • Buy this book on publisher's site