Advertisement

A Comprehensive Textbook of Classical Mathematics

A Contemporary Interpretation

  • H. B. Griffiths
  • P. J. Hilton

Table of contents

  1. Front Matter
    Pages i-xxix
  2. The Language of Mathematics

    1. Front Matter
      Pages 1-1
    2. H. B. Griffiths, P. J. Hilton
      Pages 3-17
    3. H. B. Griffiths, P. J. Hilton
      Pages 18-37
    4. H. B. Griffiths, P. J. Hilton
      Pages 38-49
    5. H. B. Griffiths, P. J. Hilton
      Pages 50-61
    6. H. B. Griffiths, P. J. Hilton
      Pages 62-70
  3. Further Set Theory

    1. Front Matter
      Pages 71-72
    2. H. B. Griffiths, P. J. Hilton
      Pages 73-87
    3. H. B. Griffiths, P. J. Hilton
      Pages 88-102
    4. H. B. Griffiths, P. J. Hilton
      Pages 103-120
  4. Arithmetic

    1. Front Matter
      Pages 121-121
    2. H. B. Griffiths, P. J. Hilton
      Pages 123-135
    3. H. B. Griffiths, P. J. Hilton
      Pages 136-145
    4. H. B. Griffiths, P. J. Hilton
      Pages 146-161
    5. H. B. Griffiths, P. J. Hilton
      Pages 162-170
    6. H. B. Griffiths, P. J. Hilton
      Pages 171-177
  5. Geometry of ℝ3

    1. Front Matter
      Pages 179-180
    2. H. B. Griffiths, P. J. Hilton
      Pages 181-202
    3. H. B. Griffiths, P. J. Hilton
      Pages 203-240
    4. H. B. Griffiths, P. J. Hilton
      Pages 241-257
    5. H. B. Griffiths, P. J. Hilton
      Pages 258-283
  6. Algebra

    1. Front Matter
      Pages 285-286
    2. H. B. Griffiths, P. J. Hilton
      Pages 287-309
    3. H. B. Griffiths, P. J. Hilton
      Pages 310-326
    4. H. B. Griffiths, P. J. Hilton
      Pages 327-337
    5. H. B. Griffiths, P. J. Hilton
      Pages 338-353
    6. H. B. Griffiths, P. J. Hilton
      Pages 354-370
  7. Number Systems and Topology

    1. Front Matter
      Pages 371-372
    2. H. B. Griffiths, P. J. Hilton
      Pages 373-381
    3. H. B. Griffiths, P. J. Hilton
      Pages 382-405
    4. H. B. Griffiths, P. J. Hilton
      Pages 406-450
  8. Calculus

    1. Front Matter
      Pages 451-452
    2. H. B. Griffiths, P. J. Hilton
      Pages 453-457
    3. H. B. Griffiths, P. J. Hilton
      Pages 458-465
    4. H. B. Griffiths, P. J. Hilton
      Pages 466-473
    5. H. B. Griffiths, P. J. Hilton
      Pages 474-493
    6. H. B. Griffiths, P. J. Hilton
      Pages 494-504
  9. Additional Topics in the Calculus

    1. Front Matter
      Pages 505-505
    2. H. B. Griffiths, P. J. Hilton
      Pages 507-513
    3. H. B. Griffiths, P. J. Hilton
      Pages 514-519
    4. H. B. Griffiths, P. J. Hilton
      Pages 520-525
    5. H. B. Griffiths, P. J. Hilton
      Pages 526-539
    6. H. B. Griffiths, P. J. Hilton
      Pages 540-547
    7. H. B. Griffiths, P. J. Hilton
      Pages 548-558
    8. H. B. Griffiths, P. J. Hilton
      Pages 559-567
  10. Foundations

    1. Front Matter
      Pages 569-570
    2. H. B. Griffiths, P. J. Hilton
      Pages 571-593
    3. H. B. Griffiths, P. J. Hilton
      Pages 594-616
  11. Back Matter
    Pages 617-640

About this book

Introduction

arithmetic of the integers, linear algebra, an introduction to group theory, the theory of polynomial functions and polynomial equations, and some Boolean algebra. It could be supplemented, of course, by material from other chapters. Again, Course 5 (Calculus) aiscusses the differential and integral calculus more or less from the beginnings of these theories, and proceeds through functions of several real variables, functions of a complex variable, and topics of real analysis such as the implicit function theorem. We would, however, like to make a further point with regard to the appropriateness of our text in course work. We emphasized in the Introduction to the original edition that, in the main, we had in mind the reader who had already met the topics once and wished to review them in the light of his (or her) increased knowledge and mathematical maturity. We therefore believe that our book could form a suitable basis for American graduate courses in the mathematical sciences, especially those prerequisites for a Master's degree.

Keywords

Arithmetic Mathematik algebra calculus equation function mathematics theorem variable

Authors and affiliations

  • H. B. Griffiths
    • 1
  • P. J. Hilton
    • 2
  1. 1.University of SouthamptonSouthamptonEngland
  2. 2.Case Western Reserve UniversityClevelandUSA

Bibliographic information