Advertisement

Maximum Principles in Differential Equations

  • Murray H. Protter
  • Hans F. Weinberger

Table of contents

  1. Front Matter
    Pages i-x
  2. Murray H. Protter, Hans F. Weinberger
    Pages 1-50
  3. Murray H. Protter, Hans F. Weinberger
    Pages 51-158
  4. Murray H. Protter, Hans F. Weinberger
    Pages 159-194
  5. Murray H. Protter, Hans F. Weinberger
    Pages 195-239
  6. Back Matter
    Pages 240-261

About this book

Introduction

Maximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.

Keywords

Boundary value problem Derivative Eigenvalue Equations differential equation hyperbolic equation maximum maximum principle partial differential equation wave equation

Authors and affiliations

  • Murray H. Protter
    • 1
  • Hans F. Weinberger
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute for Mathematics and its ApplicationsUniversity of MinnesotaMinneapolisUSA

Bibliographic information