Magnetohydrodynamic Equilibrium and Stability of Stellarators

  • Frances Bauer
  • Octavio Betancourt
  • Paul Garabedian

Table of contents

  1. Front Matter
    Pages i-x
  2. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 1-2
  3. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 3-7
  4. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 8-14
  5. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 15-21
  6. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 22-27
  7. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 28-32
  8. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 33-39
  9. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 40-47
  10. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 48-56
  11. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 57-59
  12. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 60-69
  13. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 70-77
  14. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 78-83
  15. Frances Bauer, Octavio Betancourt, Paul Garabedian
    Pages 84-191
  16. Back Matter
    Pages 193-196

About this book

Introduction

In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli­ cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .

Keywords

BETA Magnetohydrodynamik Partielle Differentialgleichung Plasmaeinschluss Stability Stellarator magnetohydrodynamics

Authors and affiliations

  • Frances Bauer
    • 1
  • Octavio Betancourt
    • 1
  • Paul Garabedian
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4612-5240-5
  • Copyright Information Springer-Verlag New York 1984
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-9753-6
  • Online ISBN 978-1-4612-5240-5
  • About this book