Advertisement

Fractals for the Classroom

Part Two: Complex Systems and Mandelbrot Set

  • Heinz-Otto Peitgen
  • Hartmut Jürgens
  • Dietmar Saupe

Table of contents

  1. Front Matter
    Pages i-xii
  2. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 1-7
  3. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 9-65
  4. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 67-115
  5. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 117-193
  6. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 195-267
  7. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 269-350
  8. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 351-414
  9. Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe
    Pages 415-473
  10. Back Matter
    Pages 475-500

About this book

Introduction

Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.

Keywords

Cantor Dynamical system Mandelbrot average calculus causality deterministic chaos equation function geometry mathematics

Authors and affiliations

  • Heinz-Otto Peitgen
    • 1
    • 2
  • Hartmut Jürgens
    • 1
  • Dietmar Saupe
    • 1
  1. 1.Institut für Dynamische SystemeUniversität BremenBremen 33Federal Republic of Germany
  2. 2.Department of MathematicsFlorida Atlantic UniversityBoca RatonUSA

Bibliographic information