Advertisement

Inverse Problems in Wave Propagation

  • Guy Chavent
  • Paul Sacks
  • George Papanicolaou
  • William W. Symes

Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 90)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Michael D. Collins
    Pages 85-104
  3. Elisabeth Croc, Yves Dermenjian
    Pages 129-145
  4. Adel Faridani
    Pages 167-193
  5. D. J. Foster, R. G. Keys, D. P. Schmitt
    Pages 195-218
  6. F. A. Grünbaum, S. K. Patch
    Pages 219-235
  7. V. G. Khajdukov, V. I. Kostin, V. A. Tcheverda
    Pages 277-294
  8. Yaroslav Kurylev, Alexander Starkov
    Pages 295-323
  9. Ching-Ju Ashraf Lee, Joyce R. Mclaughlin
    Pages 325-345
  10. J. R. McLaughlin, P. E. Sacks, M. Somasundaram
    Pages 357-374
  11. Gen Nakamura, Günther Uhlmann
    Pages 375-384
  12. Frank P. Pijpers
    Pages 419-442
  13. Erik L. Ritman, John H. Dunsmuir, Adel Faridani, David V. Finch, Kennan T. Smith, Paul J. Thomas
    Pages 443-452
  14. Back Matter
    Pages 501-506

About these proceedings

Introduction

Inverse problems in wave propagation concern extraction of information about distant structural features from the measurements of scattered waves. Tasks of this nature arise in geophysics, ocean acoustics, civil and environmental engineering, ultrasonic nondestructive testing, biomedical ultrasonics, radar, astrophysics, and other areas of science and technology. The papers in this volume represent most of these scientific and technical topics, together with fundamental mathematical investigations of the relation between waves and scatterers.

Keywords

Eigenvalue Potential Radiologieinformationssystem Vibration differential equation hyperbolic equation inverse scattering problem numerical methods scattering theory ultrasound wave

Editors and affiliations

  • Guy Chavent
    • 1
  • Paul Sacks
    • 2
  • George Papanicolaou
    • 3
  • William W. Symes
    • 4
  1. 1.Domaine de VoluceauINRIACedexFrance
  2. 2.Department of MathematicsIowa State UniversityAmesUSA
  3. 3.Department of MathematicsStanford UniversityStanfordUSA
  4. 4.Department of Computer and Applied MathematicsRice UniversityHoustonUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4612-1878-4
  • Copyright Information Springer-Verlag New York, Inc. 1997
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-7322-6
  • Online ISBN 978-1-4612-1878-4
  • Series Print ISSN 0940-6573
  • Buy this book on publisher's site