Skip to main content

The Monge—Ampère Equation

  • Book
  • © 2001


Part of the book series: Progress in Nonlinear Differential Equations and Their Applications (PNLDE, volume 44)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

In recent years, the study of the Monge-Ampere equation has received consider­ able attention and there have been many important advances. As a consequence there is nowadays much interest in this equation and its applications. This volume tries to reflect these advances in an essentially self-contained systematic exposi­ tion of the theory of weak: solutions, including recent regularity results by L. A. Caffarelli. The theory has a geometric flavor and uses some techniques from har­ monic analysis such us covering lemmas and set decompositions. An overview of the contents of the book is as follows. We shall be concerned with the Monge-Ampere equation, which for a smooth function u, is given by (0.0.1) There is a notion of generalized or weak solution to (0.0.1): for u convex in a domain n, one can define a measure Mu in n such that if u is smooth, then Mu 2 has density det D u. Therefore u is a generalized solution of (0.0.1) if M u = f.

Similar content being viewed by others


Table of contents (6 chapters)

Authors and Affiliations

  • Department of Mathematics, Temple University, Philadelphia, USA

    Cristian E. Gutiérrez

Bibliographic Information

Publish with us