Advertisement

Robust Data Mining

  • Petros Xanthopoulos
  • Panos M. Pardalos
  • Theodore B. Trafalis

Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
    Pages 1-7
  3. Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
    Pages 9-20
  4. Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
    Pages 21-26
  5. Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
    Pages 27-33
  6. Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
    Pages 35-48
  7. Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis
    Pages 49-49
  8. Back Matter
    Pages 51-59

About this book

Introduction

Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise.

This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents  the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems.

This brief will appeal to theoreticians and data miners working in this field.

Keywords

linear discriminant analysis robust data mining robust optimization support vector machines

Authors and affiliations

  • Petros Xanthopoulos
    • 1
  • Panos M. Pardalos
    • 2
  • Theodore B. Trafalis
    • 3
  1. 1., Department of Industrial EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2., Department of Industrial & Systems EnginUniversity of FloridaGainesvilleUSA
  3. 3., Industrial EngineeringUniversity of OcklahomaNormanUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4419-9878-1
  • Copyright Information Petros Xanthopoulos,Panos M. Pardalos,Theodore B. Trafalis 2013
  • Publisher Name Springer, New York, NY
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-1-4419-9877-4
  • Online ISBN 978-1-4419-9878-1
  • Series Print ISSN 2190-8354
  • Series Online ISSN 2191-575X
  • Buy this book on publisher's site