Principles and Models of Biological Transport

  • Morton H.¬†Friedman

Table of contents

  1. Front Matter
    Pages 1-15
  2. Morton H. Friedman
    Pages 1-37
  3. Morton H. Friedman
    Pages 1-43
  4. Morton H. Friedman
    Pages 1-74
  5. Morton H. Friedman
    Pages 1-39
  6. Morton H. Friedman
    Pages 1-40
  7. Morton H. Friedman
    Pages 1-34
  8. Morton H. Friedman
    Pages 1-30
  9. Morton H. Friedman
    Pages 1-61
  10. Morton H. Friedman
    Pages 1-56
  11. Morton H. Friedman
    Pages 1-37
  12. Back Matter
    Pages 1-26

About this book

Introduction

Principles and Models of Biological Transport, 2nd ed.

Morton H. Friedman

Transport processes are ubiquitous in the living organism, underlying nerve conduction and muscle contraction, digestion, kidney function and the nourishment of every cell in the body. The mechanisms by which these processes take place, and the models that describe them, are the subject of Principles and Models of Biological Transport. Beginning with the principles of thermodynamics and the organization of the cell, the text discusses each of the transport mechanisms found in the organism, their structure at the molecular level, their function and features, and their integration into tissues and organs.

Courses based on the text will be of interest to students who wish to understand the fundamentals of biological transport and the models that describe it. It will provide readers with the knowledge necessary to interpret transport experiments in biological systems and to predict performance or behavior from transport data. Advanced undergraduates or graduate students in Biomedical Engineering or Physiology and Biophysics will find this book useful, as will other engineers (Mechanical, Chemical, Environmental) who have some familiarity with biology, or Biology students who prefer a more quantitative approach to the subject.

The new edition includes numerous figures and references, and problems at the end of each chapter. It is supported by an open web site http://biotrans.pratt.duke.edu/ to facilitate its use in class. The web site allows faculty users to share syllabi based on the text and to post additional problems that can serve as illustrations or be given to students; all users are welcome to note corrections and suggest improvements in the text, and to add new material to the knowledge base. The web site is intended to support a "community of the book" that can maintain its currency and value into the future.

About the author:

Morton H. Friedman is Professor and former Chair of the Biomedical Engineering Department at Duke University and Professor of Medicine in the Duke University Medical Center. He originated the biological transport course in the Department of Biomedical Engineering at Johns Hopkins University and taught at The Ohio State University prior to arriving at Duke. He is a Fellow of the American Association for the Advancement of Science, the Biomedical Engineering Society, and the American Society of Mechanical Engineers, a Founding Fellow of the American Institute for Medical and Biological Engineering, and recipient of the H.R. Lissner medal and the Richard Skalak award of the American Society of Mechanical Engineers.

Keywords

BIOL Biological Biological Models Biological Transport Friedman Principles Transport Transport Processes base biology biomedical engineering dynamics physiology thermodynamics tissue

Authors and affiliations

  • Morton H.¬†Friedman
    • 1
  1. 1.Dept. Biomedical EngineeringDuke UniversityDurhamU.S.A.

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-387-79240-8
  • Copyright Information Springer-Verlag New York 2008
  • Publisher Name Springer, New York, NY
  • eBook Packages Engineering
  • Print ISBN 978-0-387-79239-2
  • Online ISBN 978-0-387-79240-8
  • About this book