Advertisement

Simulating Continuous Fuzzy Systems

  • James J. Buckley
  • Leonard J. Jowers
Book

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 188)

Table of contents

  1. Front Matter
    Pages I-XI
  2. Pages 1-8
  3. Pages 9-19
  4. Pages 21-32
  5. Pages 33-37
  6. Pages 49-53
  7. Pages 55-61
  8. Pages 63-67
  9. Pages 75-79
  10. Pages 81-86
  11. Pages 87-93
  12. Pages 105-110
  13. Pages 111-116
  14. Pages 117-124
  15. Pages 139-143
  16. Pages 145-149
  17. Pages 151-156
  18. Pages 163-166
  19. Pages 167-174
  20. Back Matter
    Pages 191-202

About this book

Introduction

This monograph studies continuous fuzzy dynamical systems using crisp continuous simulation. A crisp continuous dynamical system is presented whose evolution depends on a system of ordinary differential equations (ODEs). The system of ODEs contains parameters many of which have uncertain values. Usually point estimators for these uncertain parameters are used, but the resulting system will not display any uncertainty associated with these estimators. Instead fuzzy number estimators are employed, constructed from expert opinion or from data, for the uncertain parameters. Fuzzy number estimators produce a system of fuzzy ODEs to solve whose solution will be fuzzy trajectories for the variables. The authors use crisp continuous simulation to estimate the trajectories of the support and core of these fuzzy numbers in a variety of twenty applications of fuzzy dynamical systems. The applications range from Bungee jumping to the AIDS epidemic to dynamical models in economics. This book is the companion text to "Simulating Fuzzy Systems" (Springer 2005) which investigated discrete fuzzy systems through crisp discrete simulation.

Keywords

Fuzzy Fuzzy System Theory Genetic Algorithms MATLAB Simulation Simulation of Fuzzy Systems System differential equation dynamische Systeme fuzzy set fuzzy system model optimization uncertainty

Authors and affiliations

  • James J. Buckley
    • 1
  • Leonard J. Jowers
    • 2
  1. 1.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Computer and Information SciencesUniversity of Alabama at BirminghamBirminghamUSA

Bibliographic information

  • DOI https://doi.org/10.1007/3-540-31227-7
  • Copyright Information Springer-Verlag Berlin Heidelberg 2006
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Engineering
  • Print ISBN 978-3-540-28455-0
  • Online ISBN 978-3-540-31227-7
  • Series Print ISSN 1434-9922
  • Buy this book on publisher's site