Skip to main content
  • Conference proceedings
  • © 2006

Algorithmic Learning Theory

17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings

Part of the book series: Lecture Notes in Computer Science (LNCS, volume 4264)

Part of the book sub series: Lecture Notes in Artificial Intelligence (LNAI)

Conference series link(s): ALT: International Conference on Algorithmic Learning Theory

Conference proceedings info: ALT 2006.

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-46650-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 109.99
Price excludes VAT (USA)

This is a preview of subscription content, access via your institution.

Table of contents (30 papers)

  1. Front Matter

  2. Editors’ Introduction

    1. Editors’ Introduction

      • Jose L. Balcázar, Philip M. Long, Frank Stephan
      Pages 1-9
  3. Regular Contributions

    1. Learning Unions of ω(1)-Dimensional Rectangles

      • Alp Atıcı, Rocco A. Servedio
      Pages 32-47
    2. Active Learning in the Non-realizable Case

      • Matti Kääriäinen
      Pages 63-77
    3. Teaching Memoryless Randomized Learners Without Feedback

      • Frank J. Balbach, Thomas Zeugmann
      Pages 93-108
    4. The Complexity of Learning SUBSEQ (A)

      • Stephen Fenner, William Gasarch
      Pages 109-123
    5. Learning and Extending Sublanguages

      • Sanjay Jain, Efim Kinber
      Pages 139-153
    6. Towards a Better Understanding of Incremental Learning

      • Sanjay Jain, Steffen Lange, Sandra Zilles
      Pages 169-183
    7. On Exact Learning from Random Walk

      • Nader H. Bshouty, Iddo Bentov
      Pages 184-198
    8. Risk-Sensitive Online Learning

      • Eyal Even-Dar, Michael Kearns, Jennifer Wortman
      Pages 199-213

Other Volumes

  1. Algorithmic Learning Theory

    17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006. Proceedings

Keywords

  • Boosting
  • Support Vector Machine
  • algorithm
  • algorithmic learning theory
  • algorithms
  • kernel method
  • learning
  • learning theory
  • machine learning
  • reinforcement learning
  • algorithm analysis and problem complexity

Editors and Affiliations

  • Departament de Llenguatges i Sistemes Informàtics Laboratori d’Algorísmica Relacional, Complexitat i Aprenentatge, Universitat Politècnica de Catalunya, Barcelona,  

    José L. Balcázar

  • Google, Mountain View, USA

    Philip M. Long

  • Department of Computer Science and Department of Mathematics, National University of Singapore, Singapore, Republic of Singapore

    Frank Stephan

Bibliographic Information

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-46650-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book USD 109.99
Price excludes VAT (USA)