Advertisement

OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]

Foreword by Allan Bundy

  • Michael Kohlhase

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4180)

Also part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 4180)

Table of contents

  1. Front Matter
  2. Setting the Stage for Open Mathematical Documents

    1. Michael Kohlhase
      Pages 3-11
    2. Michael Kohlhase
      Pages 13-23
    3. Michael Kohlhase
      Pages 25-32
  3. An OMDoc Primer

    1. Michael Kohlhase
      Pages 33-34
    2. Michael Kohlhase
      Pages 35-48
    3. Michael Kohlhase
      Pages 49-53
    4. Michael Kohlhase
      Pages 55-58
    5. Michael Kohlhase
      Pages 59-63
  4. The OMDoc Document Format

    1. Michael Kohlhase
      Pages 81-81
    2. Michael Kohlhase
      Pages 83-87
    3. Michael Kohlhase
      Pages 89-96
    4. Michael Kohlhase
      Pages 97-105
    5. Michael Kohlhase
      Pages 107-120
    6. Michael Kohlhase
      Pages 121-131
    7. Michael Kohlhase
      Pages 133-154
    8. Michael Kohlhase
      Pages 155-158
    9. Michael Kohlhase
      Pages 159-171
    10. Michael Kohlhase
      Pages 173-186
    11. Michael Kohlhase
      Pages 187-200
    12. Michael Kohlhase
      Pages 201-208
    13. Michael Kohlhase
      Pages 209-211
    14. Michael Kohlhase
      Pages 213-220
  5. OMDoc Applications, Tools, and Projects

    1. Michael Kohlhase
      Pages 221-221
    2. Michael Kohlhase
      Pages 223-225
    3. Michael Kohlhase
      Pages 227-233
    4. Michael Kohlhase
      Pages 235-240
    5. Michael Kohlhase
      Pages 241-316
  6. Appendix

    1. Michael Kohlhase
      Pages 317-317
    2. Michael Kohlhase
      Pages 319-331
    3. Michael Kohlhase
      Pages 333-338
    4. Michael Kohlhase
      Pages 339-344
    5. Michael Kohlhase
      Pages 345-359
    6. Michael Kohlhase
      Pages 361-373
  7. Back Matter

About this book

Introduction

Computers arechanging the way wethink. Of course,nearly all desk-workers have access to computers and use them to email their colleagues, search the Web for information and prepare documents. But I’m not referring to that. I mean that people have begun to think about what they do in compu- tional terms and to exploit the power of computers to do things that would previously have been unimaginable. This observation is especially true of mathematicians. Arithmetic c- putation is one of the roots of mathematics. Since Euclid’s algorithm for ?nding greatest common divisors, many seminal mathematical contributions have consisted of new procedures. But powerful computer graphics have now enabled mathematicians to envisage the behaviour of these procedures and, thereby, gain new insights, make new conjectures and explore new avenues of research. Think of the explosive interest in fractals, for instance. This has been driven primarily by our new-found ability rapidly to visualise fractal shapes, such as the Mandelbrot set. Taking advantage of these new oppor- nities has required the learning of new skills, such as using computer algebra and graphics packages.

Keywords

Agent Communication Content Markup Interactive Books Markup Languages Markup Schemes MathML Mathematical Knowledge Management Mathematical Knowledge Representation OMDoc Open Mathematical Documents OpenMath XSLT knowledge mathematical software

Authors and affiliations

  • Michael Kohlhase
    • 1
  1. 1.Computer ScienceJacobs University Bremen 

Bibliographic information

  • DOI https://doi.org/10.1007/11826095
  • Copyright Information Springer-Verlag Berlin Heidelberg 2006
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Computer Science
  • Print ISBN 978-3-540-37897-6
  • Online ISBN 978-3-540-37898-3
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site