Advertisement

Carbon Nanotubes

  • Valentin N. Popov
  • Philippe Lambin

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 222)

Table of contents

  1. Front Matter
    Pages I-XIII
  2. Synthesis and structural characterization

    1. Front Matter
      Pages I-XIII
    2. BJÖRN HORNBOSTEL, MIRO HALUSKA, JIRKA CECH, URSULA DETTLAFF, SIEGMAR ROTH
      Pages 1-18
    3. LÁSZLÓ P. BIRÓ, PHILIPPE LAMBIN
      Pages 19-42
    4. E. THUNE, D. PREUSCHE, C. STRUNK, H. T. MAN, A. MORPURGO, F. PAILLOUX et al.
      Pages 43-44
    5. MARIE-FAITH FIAWOO, ANNICK LOISEAU, ANNE-MARIE BONNOT, ANTONIO IAIA, VINCENT BOUCHIAT, JANY THIBAULT
      Pages 47-48
    6. R. CAUDILLO, M. JOSÉ-YACAMAN, H. E. TROIANI, M. A. L. MARQUES, A. RUBIO
      Pages 49-50
    7. I. N. KHOLMANOV, M. FANETTI, L. GAVIOLI, M. CASELLA, M. SANCROTTI
      Pages 51-52
    8. Z.E. HORVÁTH, A. A. KOÓS, Z. VÉRTESY, L. TAPASZTÓ, Z. OSVÁTH, P. NEMES INCZE et al.
      Pages 53-54
    9. ALEXANDER MALESEVIC, A. VANHULSEL, C. VAn HAESENDONCK
      Pages 55-56
    10. TH.DIKONIMOS MAKRIS, R. GIORGI, N. LISI, E. SALERNITANO, M. F. DE RICCARDIS, D. CARBONE
      Pages 57-58
    11. TH.DIKONIMOS MAKRIS, L. GIORGI, R. GIORGI, N. LISI, E. SALERNITANO, M. ALVISI et al.
      Pages 59-60
    12. R. RIZZOLI, R. ANGELUCCI, S. GUERRI, F. CORTICELLI, M. CUFFIANI, G. VERONESE
      Pages 61-62
    13. NADEZDA I. MAKSIMOVA, JORG ENGSTLER, JORG J. SCHNEIDER
      Pages 63-64
    14. KSENIIA KATOK, SERGIY BRICHKA, VALENTYN TERTYKH, GENNADIY PRIKHOD’KO
      Pages 65-66
  3. Vibrational properties and optical spectroscopies

    1. Front Matter
      Pages I-XIII
    2. VALENTIN N. POPOV, PHILIPPE LAMBIN
      Pages 69-88
    3. H. KUZMANY, M. HULMAN, R. PFEIFFER, F. SIMON
      Pages 89-120
    4. THIERRY MICHEL, MATTHIEU PAILLET, PHILIPPE PONCHARAL, AHMED ZAHAB, JEAN-LOUIS SAUVAJOL, JANNIK C. MEYER et al.
      Pages 121-122
  4. Electronic and optical properties and electrical transport

    1. Front Matter
      Pages I-XIII
    2. PH. LAMBIN, F. TRIOZON, V. MEUNIER
      Pages 123-142
    3. SYLVAIN LATIL, FRANÇOIS TRIOZON, STEPHAN ROCHE
      Pages 143-165
    4. GÉZA I. MÁRK, LEVENTE TAPASZTÓ, LÁSZLÓ P. BIRÓ, ALEXANDRE MAYER
      Pages 167-168
    5. EVA KOVATS, ARON PEKKER, SANDOR PEKKER, FERENC BORONDICS, KATALIN KAMARAS
      Pages 169-170
    6. C. GADERMAIER, C. MANZONI, A. GAMBETTA, G. CERULLO, G. LANZANI, E. MENNA et al.
      Pages 171-172
    7. A. M. NEMILENTSAU, A. A. KHRUTCHINSKII, G. YA. SLEPYAN, S. A. MAKSIMENKO
      Pages 175-176
    8. DUNCAN J. MOWBRAY, SANGWOO CHUNG, ZORAN L. MIŠKOVIĆ
      Pages 177-178
    9. P. N. D’YACHKOV, D. V. MAKAEV
      Pages 181-182
    10. V. K. KSENEVICH, J. GALIBERT, L. FORRO, V. A. SAMUILOV
      Pages 183-184
  5. Molecule adsorption, functionalization and chemical properties

    1. Front Matter
      Pages I-XIII
    2. EVGENIYA DAYKOVA, STOYAN PISOV, ANA PROYKOVA
      Pages 209-210
    3. SILVIA GIORDANI, SHANE D. BERGIN, ANNA DRURY, ÉIMHÍN NÍ MHUIRCHEARTAIGH, JONATHAN N. COLEMAN, WERNER J. BLAU
      Pages 211-212
    4. HRISTO ILIEV, ANA PROYKOVA, FENG-YIN LI
      Pages 213-214
  6. Mechanical properties of nanotubes and composite materials

    1. Front Matter
      Pages I-XIII
    2. VICTOR LYKAH, EVGEN S. SYRKIN
      Pages 217-218
    3. K. AVRAMOVA, A. MILCHEV
      Pages 219-220
    4. CSABA BALÁZSI, FERENC WÉBER, ZSUZSANNA KÖVÉR, PÉTER ARATO, ZSOLT CZIGÁNY, ZOLTÁN KÓNYA et al.
      Pages 221-222
    5. FIONA M. BLIGHE, MANUEL RUETHER, RORY LEAHY, WERNER J. BLAU
      Pages 223-224
    6. DANIEL VRBANIC, MARJAN MARINSEK, STANE PEJOVNIK, ALOJZ ANZLOVAR, POLONA UMEK, DRAGAN MIHAILOVIC
      Pages 225-226
    7. V. CHIRILA, G. MARGINEAN, W. BRANDL, T. ICLANZAN
      Pages 227-228
  7. Applications

About these proceedings

Introduction

It is about 15 years that the carbon nanotubes have been discovered by Sumio Iijima in a transmission electron microscope. Since that time, these long hollow cylindrical carbon molecules have revealed being remarkable nanostructures for several aspects. They are composed of just one element, Carbon, and are easily produced by several techniques. A nanotube can bend easily but still is very robust. The nanotubes can be manipulated and contacted to external electrodes. Their diameter is in the nanometer range, whereas their length may exceed several micrometers, if not several millimeters. In diameter, the nanotubes behave like molecules with quantized energy levels, while in length, they behave like a crystal with a continuous distribution of momenta. Depending on its exact atomic structure, a single-wall nanotube –that is to say a nanotube composed of just one rolled-up graphene sheet– may be either a metal or a semiconductor. The nanotubes can carry a large electric current, they are also good thermal conductors. It is not surprising, then, that many applications have been proposed for the nanotubes. At the time of writing, one of their most promising applications is their ability to emit electrons when subjected to an external electric field. Carbon nanotubes can do so in normal vacuum conditions with a reasonable voltage threshold, which make them suitable for cold-cathode devices.

Keywords

Gold Raman spectroscopy basic research carbon nanotubes composite material crystal diffraction electron diffraction microscopy modeling nanotechnology polymer spectroscopy

Editors and affiliations

  • Valentin N. Popov
    • 1
  • Philippe Lambin
    • 2
  1. 1.Faculty of PhysicsUniversity of SofiaBulgaria
  2. 2.Département de PhysiqueFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Bibliographic information