Electron, Spin and Momentum Densities and Chemical Reactivity

  • Paul G. Mezey
  • Beverly E. Robertson

Part of the Understanding Chemical Reactivity book series (UCRE, volume 21)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Pietro Roversi, John J. Irwin, Gérard Bricogne
    Pages 1-26
  3. J. Schweizer, R. J. Papoular, E. Ressouche, F. Tasset, A. I. Zheludev
    Pages 37-44
  4. Kenneth E. Edgecombe, Alan Ableson, Kim Baxter, Antony Chiverton, Janice Glasgow, Suzanne Fortier
    Pages 115-125
  5. T. Lippmann, D. Waasmeier, A. Kirfel, J. R. Schneider
    Pages 209-212
  6. A. Alan Pinkerton
    Pages 213-223
  7. E. Lelièvre-Berna
    Pages 225-232
  8. E. Lelièvre-Berna, M. Portes De Albuquerque, F. Tasset, P. J. Brown
    Pages 235-243
  9. Y. Pontillon, A. Caneschi, D. Gatteschi, E. Ressouche, F. Romero, J. Schweizer et al.
    Pages 265-274

About this book

Introduction

The electron density of a non-degenerate ground state system determines essentially all physical properties of the system. This statement of the Hohenberg–Kohn theorem of Density Functional Theory plays an exceptionally important role among all the fundamental relations of Molecular Physics. In particular, the electron density distribution and the dynamic properties of this density determine both the local and global reactivities of molecules. High resolution experimental electron densities are increasingly becoming available for more and more molecules, including macromolecules such as proteins. Furthermore, many of the early difficulties with the determination of electron densities in the vicinity of light nuclei have been overcome. These electron densities provide detailed information that gives important insight into the fundamentals of molecular structure and a better understanding of chemical reactions. The results of electron density analysis are used in a variety of applied fields, such as pharmaceutical drug discovery and biotechnology. If the functional form of a molecular electron density is known, then various molecular properties affecting reactivity can be determined by quantum chemical computational techniques or alternative approximate methods.

Keywords

Atom Chemical reaction Neutron Spin crystallography distribution entropy

Editors and affiliations

  • Paul G. Mezey
    • 1
  • Beverly E. Robertson
    • 2
  1. 1.University of SaskatchewanSaskatoonCanada
  2. 2.University of ReginaReginaCanada

Bibliographic information

  • DOI https://doi.org/10.1007/0-306-46943-X
  • Copyright Information Kluwer Academic Publishers 2000
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-7923-6085-8
  • Online ISBN 978-0-306-46943-5
  • About this book