Table of contents

  1. Front Matter
  2. Jan H. van Schuppen
    Pages 3-5
  3. Jean-Yves Le Boudec, Patrick Thiran
    Pages 7-14
  4. Stéphane Gaubert, Ricardo Katz
    Pages 15-22
  5. Sébastien Lahaye, Laurent Houssin, Jean-Louis Boimond
    Pages 23-30
  6. Christiano P. Pessanha, Rafael Santos-Mendes
    Pages 31-38
  7. Laurent Truffet
    Pages 39-45
  8. Mehdi Lhommeau, Laurent Hardouin, Bertrand Cottenceau
    Pages 47-54
  9. Manuel Silva, Laura Recalde
    Pages 55-62
  10. René David, Hassane Alla
    Pages 63-70
  11. Marco Gribaudo, András Horváth
    Pages 71-78
  12. Roberta Armosini, Alessandro Giua, M. Teresa Pilloni, Carla Seatzu
    Pages 79-86
  13. Mariapia Saccomani, Stefania Audoly, Giuseppina Bellu, Leontina D’Angiò
    Pages 87-93
  14. Andreas Kremling, Katja Bettenbrock, Sophia Fischer, Martin Ginkel, Thomas Sauter, Ernst Dieter Gilles
    Pages 95-102
  15. Michel Kieffer, Eric Walter
    Pages 103-110
  16. Claudine Chaouiya, Elisabeth Remy, Brigitte Mossé, Denis Thieffry
    Pages 119-126
  17. Julien Arino, Pauline van den Driessche
    Pages 135-142

About these proceedings

Introduction

This book contains the proceedings of the First Multidisciplinary International Symposium on Positive Systems Theory and Applications (POSTA 2003) held in Rome, Italy, on August 28-30, 2003.  Positive Systems are systems in which the relevant variables assume nonnegative values. These systems are quite common in applications where variables represent positive quantities such as populations, goods, money, time, data packets flowing in a network, densities of chemical species, probabilities etc. The aim of the symposium was to join together researchers working in the different areas related to positive systems such as telecommunications, economy, biomedicine, chemistry and physics in order to provide a multidisciplinary forum where they have the opportunity to exchange ideas and compare results in a unifying framework.

Keywords

Biological Systems Markov Max-Plus Algebra Nonlinear system Nonnegative Matrices Positive Systems Positivity communication optimization systems theory

Bibliographic information

  • DOI https://doi.org/10.1007/b79667
  • Copyright Information Springer-Verlag Berlin/Heidelberg 2003
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-40342-5
  • Online ISBN 978-3-540-44928-7
  • Series Print ISSN 0170-8643
  • Series Online ISSN 1610-7411
  • About this book