Lie Algebras and Algebraic Groups

  • Patrice Tauvel
  • Rupert W. T. Yu
Part of the Springer Monographs in Mathematics book series (SMM)

Table of contents

  1. Front Matter
    Pages i-xvi
  2. Pages 11-29
  3. Pages 31-37
  4. Pages 39-53
  5. Pages 55-73
  6. Pages 95-101
  7. Pages 103-112
  8. Pages 131-145
  9. Pages 167-182
  10. Pages 183-190
  11. Pages 191-204
  12. Pages 205-218
  13. Pages 219-232
  14. Pages 233-275
  15. Pages 277-297

About this book

Introduction

The theory of Lie algebras and algebraic groups has been an area of active research in the last 50 years. It intervenes in many different areas of mathematics: for example invariant theory, Poisson geometry, harmonic analysis, mathematical physics. The aim of this book is to assemble in a single volume the algebraic aspects of the theory so as to present the foundation of the theory in characteristic zero. Detailed proofs are included and some recent results are discussed in the last chapters. All the prerequisites on commutative algebra and algebraic geometry are included.

Keywords

Abstract algebra Algebra Algebraic geometry Algebraic groups Commutative algebra algebra algebras Zariski topology algebraic varieties

Authors and affiliations

  • Patrice Tauvel
    • 1
  • Rupert W. T. Yu
    • 1
  1. 1.Département de MathématiquesUniversité de Poitiers, Boulevard Marie et Pierre CurieFuturoscope Chasseneuil cedexFrance

Bibliographic information

  • DOI https://doi.org/10.1007/b139060
  • Copyright Information Springer-Verlag Berlin Heidelberg 2005
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-540-24170-6
  • Online ISBN 978-3-540-27427-8
  • Series Print ISSN 1439-7382