Topics in Fluorescence Spectroscopy

Volume 6: Protein Fluorescence

  • Joseph R. Lakowicz

Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 6)

Table of contents

  1. Front Matter
    Pages i-xxi
  2. Maurice R. Eftink
    Pages 1-15
  3. J. B. Alexander Ross, Elena Rusinova, Linda A. Luck, Kenneth W. Rousslang
    Pages 17-42
  4. Giampiero Mei, Nicola Rosato, Alessandro Finazzi Agro
    Pages 67-81
  5. Yves Engelborghs, Alan Fersht
    Pages 83-101
  6. Alain Sillen, Jens Hennecke, Rudi Glockshuber, Yves Engelborghs
    Pages 103-121
  7. Jacques Haiech, Marie-Claude Kilhoffer
    Pages 175-209
  8. Rhoda Elison Hirsch
    Pages 221-255
  9. Sabato D’Auria, Mosè Rossi, Ignacy Gryczynski, Joseph R. Lakowicz
    Pages 285-306
  10. Back Matter
    Pages 307-310

About this book


The intrinsic or natural fluorescence of proteins is perhaps the most complex area of biochemical fluorescence. Fortunately the fluorescent amino acids, phenylalanine, tyrosine and tryptophan are relatively rare in proteins. Tr- tophan is the dominant intrinsic fluorophore and is present at about one mole % in protein. As a result most proteins contain several tryptophan residues and even more tyrosine residues. The emission of each residue is affected by several excited state processes including spectral relaxation, proton loss for tyrosine, rotational motions and the presence of nearby quenching groups on the protein. Additionally, the tyrosine and tryptophan residues can interact with each other by resonance energy transfer (RET) decreasing the tyrosine emission. In this sense a protein is similar to a three-particle or mul- particle problem in quantum mechanics where the interaction between particles precludes an exact description of the system. In comparison, it has been easier to interpret the fluorescence data from labeled proteins because the fluorophore density and locations could be controlled so the probes did not interact with each other. From the origins of biochemical fluorescence in the 1950s with Prof- sor G. Weber until the mid-1980s, intrinsic protein fluorescence was more qualitative than quantitative. An early report in 1976 by A. Grindvald and I. Z. Steinberg described protein intensity decays to be multi-exponential. Attempts to resolve these decays into the contributions of individual tryp- phan residues were mostly unsuccessful due to the difficulties in resolving closely spaced lifetimes.


Calcium Phosphor escherichia coli fluorescence luminescence membrane mutant protein spectra spectroscopy temperature units water

Editors and affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.Center for Fluorescence Spectroscopy and Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimore

Bibliographic information