Primality Testing and Abelian Varieties Over Finite Fields

  • Authors
  • Leonard M. Adleman
  • Ming-Deh A. Huang

Part of the Lecture Notes in Mathematics book series (LNM, volume 1512)

Table of contents

  1. Front Matter
    Pages I-VII
  2. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 1-3
  3. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 4-4
  4. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 5-14
  5. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 15-21
  6. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 21-109
  7. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 110-125
  8. Leonard M. Adleman, Ming-Deh A. Huang
    Pages 126-136
  9. Back Matter
    Pages 137-142

About this book

Introduction

From Gauss to G|del, mathematicians have sought an efficient algorithm to distinguish prime numbers from composite numbers. This book presents a random polynomial time algorithm for the problem. The methods used are from arithmetic algebraic geometry, algebraic number theory and analyticnumber theory. In particular, the theory of two dimensional Abelian varieties over finite fields is developed. The book will be of interest to both researchers and graduate students in number theory and theoretical computer science.

Keywords

Abelian Varieties Computational Complexity Number theory Prime Prime Numbers Prime number finite field

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0090185
  • Copyright Information Springer-Verlag Berlin Heidelberg 1992
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-55308-3
  • Online ISBN 978-3-540-47021-2
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book