Category Theory

Proceedings of the International Conference held in Como, Italy, July 22–28, 1990

  • Editors
  • Aurelio Carboni
  • Maria Cristina Pedicchio
  • Guiseppe Rosolini

Part of the Lecture Notes in Mathematics book series (LNM, volume 1488)

Table of contents

  1. Front Matter
    Pages I-VI
  2. F. William Lawvere
    Pages 1-13
  3. Jiří Adámek, Jiří Rosický
    Pages 14-19
  4. Jean Benabou
    Pages 20-29
  5. Francis Borceux, Gilberte Van den bossche
    Pages 30-42
  6. S. Carmody, R. F. C. Walters
    Pages 63-78
  7. Antonio M. Cegarra, Antonio R. Garzón
    Pages 79-94
  8. Peter Freyd
    Pages 95-104
  9. J. M. E. Hyland
    Pages 131-156
  10. George Janelidze
    Pages 157-173
  11. George Janelidze, Walter Tholen
    Pages 174-186
  12. C. Barry Jay
    Pages 187-192
  13. Peter Johnstone, Steven Vickers
    Pages 193-212
  14. André Joyal, Myles Tierney
    Pages 213-236
  15. S. Kasangian, S. Vigna
    Pages 237-248

About these proceedings

Introduction

With one exception, these papers are original and fully refereed research articles on various applications of Category Theory to Algebraic Topology, Logic and Computer Science. The exception is an outstanding and lengthy survey paper by Joyal/Street (80 pp) on a growing subject: it gives an account of classical Tannaka duality in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments and quantum groups. No expertise in either representation theory or category theory is assumed. Topics such as the Fourier cotransform, Tannaka duality for homogeneous spaces, braided tensor categories, Yang-Baxter operators, Knot invariants and quantum groups are introduced and studies. From the Contents: P.J. Freyd: Algebraically complete categories.- J.M.E. Hyland: First steps in synthetic domain theory.- G. Janelidze, W. Tholen: How algebraic is the change-of-base functor?.- A. Joyal, R. Street: An introduction to Tannaka duality and quantum groups.- A. Joyal, M. Tierney: Strong stacks andclassifying spaces.- A. Kock: Algebras for the partial map classifier monad.- F.W. Lawvere: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes.- S.H. Schanuel: Negative sets have Euler characteristic and dimension.-

Keywords

Algebraic topology Category theory Euler characteristic Homotopy Knot invariant Model of Computations Sheaves Topoi categories

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0084207
  • Copyright Information Springer-Verlag Berlin Heidelberg 1991
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-54706-8
  • Online ISBN 978-3-540-46435-8
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book