Potential Theory on Infinite Networks

  • Authors
  • Paolo¬†M.¬†Soardi

Part of the Lecture Notes in Mathematics book series (LNM, volume 1590)

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Paolo M. Soardi
    Pages 1-21
  3. Paolo M. Soardi
    Pages 22-31
  4. Paolo M. Soardi
    Pages 32-71
  5. Paolo M. Soardi
    Pages 72-99
  6. Paolo M. Soardi
    Pages 100-130
  7. Paolo M. Soardi
    Pages 131-159
  8. Paolo M. Soardi
    Pages 160-172
  9. Back Matter
    Pages 173-191

About this book

Introduction

The aim of the book is to give a unified approach to new developments in discrete potential theory and infinite network theory. The author confines himself to the finite energy case, but this does not result in loss of complexity. On the contrary, the functional analytic machinery may be used in analogy with potential theory on Riemann manifolds.
The book is intended for researchers with interdisciplinary interests in one of the following fields: Markov chains, combinatorial graph theory, network theory, Dirichlet spaces, potential theory, abstract harmonic analysis, theory of boundaries.

Keywords

Infinite Networks Markov chain Potential theory boundary dirichlet discrete potential networks graph theory harmonic analysis

Bibliographic information

  • DOI https://doi.org/10.1007/BFb0073995
  • Copyright Information Springer-Verlag Berlin Heidelberg 1994
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-58448-3
  • Online ISBN 978-3-540-48798-2
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • About this book