Physics and Chemistry of Finite Systems: From Clusters to Crystals

  • P. Jena
  • S. N. Khanna
  • B. K. Rao

Part of the NATO ASI Series book series (ASIC, volume 374)

Table of contents

  1. Front Matter
    Pages i-xxiv
  2. Atomic Structure

    1. S. J. Riley, E. K. Parks
      Pages 19-28
    2. A. R. Kortan, R. S. Becker, F. A. Thiel, H. S. Chen
      Pages 29-38
    3. Ruizhong Hu, T. Egami, A.-P. Tsai, A. Inoue, T. Masumoto, J. C. Holtzer et al.
      Pages 39-48
    4. P. Guyot, M. Audier, M. De Boissieu
      Pages 49-59
    5. Klaus Sattler
      Pages 61-70
    6. Lawrence S. Bartell, Theodore S. Dibble, James W. Hovick, Shimin Xu
      Pages 71-76
    7. Jitendra Kumar, Anu Gupta
      Pages 93-98
    8. T. Nguyen, K. Cox, D. D. Shillady
      Pages 105-110
    9. M. Rösler, H. Hofmeister, E. Held
      Pages 111-118
    10. S. Sawada, S. Sugano
      Pages 119-124
    11. J. E. Shield, M. J. Kramer, R. W. McCallum, A. I. Goldman
      Pages 125-129
  3. Stability and Evolution

    1. T. P. Martin, U. Näher, H. Göhlich, T. Lange
      Pages 147-156
    2. J. Mansikka-Aho, J. Suhonen, S. Valkealahti, E. Hammarén, M. Manninen
      Pages 157-164
    3. Uzi Landman, R. N. Barnett, C. L. Cleveland, G. Rajagopal
      Pages 165-176
    4. A. P. Tsai, Y. Yokoyama, A. Inoue, T. Masumoto
      Pages 177-187
    5. M. Kleman
      Pages 199-210
    6. Soumitra Chattopadhyay, Patricia L. M. Plummer
      Pages 211-216
    7. K. Kaya, A. Nakajima, T. Naganuma, K. Hoshino
      Pages 229-234
    8. T. Leisner, K. Athanassenas, O. Echt, D. Kreisle, E. Recknagel
      Pages 235-240
    9. F. Reuse, M. J. Lopez, S. N. Khanna, V. De Coulon, J. Buttet
      Pages 241-247
    10. H. Shiromaru, M. Mizumachi, Y. Achiba, N. Yanase, N. Kobayashi, Y. Kaneko
      Pages 259-264
    11. Zdenĕk Slanina
      Pages 265-270
  4. Dynamics

    1. R. Stephen Berry, Hai-Ping Cheng
      Pages 277-286
    2. J. Bernholc, Jae-Yel Yi, Q.-M. Zhang, D. J. Sullivan, C. J. Brabec, S. A. Kajihara et al.
      Pages 287-297
    3. M. E. Lin, A. Ramachandra, R. P. Andres, R. Reifenberger
      Pages 309-322
    4. Wanda Andreoni, François Gygi, Michele Parrinello
      Pages 333-338
    5. J. Baak, H. B. Brom, L. J. de Jongh, G. Schmid
      Pages 339-344
    6. W. S. Bacsa, J. S. Lannin
      Pages 345-349
    7. F. M. Beniere, B. Rousseau, A. H. Fuchs, M.-F. De Feraudy, G. Torchet
      Pages 363-367
    8. C. Brechignac, Ph. Cahuzac, M. de Frutos, J. Ph. Roux, K. Bowen
      Pages 369-374
    9. Frederic J. Dulles, Bor-Jing Chuko, Lawrence S. Bartell
      Pages 393-398

About this book


Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the size dependent properties change from discrete quantum conditions, as in clusters, to boundary constrained bulk conditions, as in nanoscale materials, to bulk conditions insensitive to boundaries? How do the criteria of classification have to be changed as one goes from one size domain to another? Potential for high technological applications also seem to be endless. Clusters of otherwise non-magnetic materials exhibit magnetic behavior when constrained by size, shape, and dimension. NanoscaIe metal particles exhibit non-linear opticaI properties and increased mechanical strength. SimiIarly, materials made from nanoscale ceramic particIes possess plastic behavior.


adsorption carbon catalysis chemical reaction chemistry crystal fullerene metals oxygen polymer quasicrystal silicon spectroscopy structure thermochemistry

Editors and affiliations

  • P. Jena
    • 1
  • S. N. Khanna
    • 1
  • B. K. Rao
    • 1
  1. 1.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media B.V. 1992
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-017-2647-4
  • Online ISBN 978-94-017-2645-0
  • Series Print ISSN 1389-2185
  • Buy this book on publisher's site