Advertisement

Approximation Theory, Wavelets and Applications

  • S. P. Singh

Part of the NATO Science Series book series (ASIC, volume 454)

Table of contents

  1. Front Matter
    Pages i-xxiii
  2. E. W. Cheney
    Pages 37-45
  3. M. Gasca, J. M. Peña
    Pages 131-151
  4. Z. F. Koçak, G. M. Phillips
    Pages 169-176
  5. S. L. Lee, G. M. Phillips
    Pages 177-196
  6. Alain Le Méhauté
    Pages 197-213
  7. Will Light, Henry Wayne
    Pages 215-246
  8. Ewald Quak, Norman Weyrich
    Pages 247-283
  9. S. P. Singh, B. Watson
    Pages 285-294
  10. J. Appell
    Pages 295-302
  11. M. Campiti, G. Metafune, D. Pallara
    Pages 303-313
  12. S. de Marchi, M. Morandi Cecchi
    Pages 325-334
  13. B. Della Vecchia, G. Mastroianni
    Pages 335-346
  14. Carlo Franchetti
    Pages 357-364
  15. Maurits Malfait, Dirk Roose
    Pages 403-414
  16. Giuseppe Marino, Paolamaria Pietramala
    Pages 415-421
  17. David L. Ragozin, Andrew Bruce, Hong-Ye Gao
    Pages 423-432
  18. Thomas Sauer, Yuan Xu
    Pages 443-452
  19. Boris Shekhtman
    Pages 465-471
  20. Frauke Sprengel
    Pages 473-483
  21. V. Strela, G. Strang
    Pages 485-496
  22. M. Tasche
    Pages 497-512
  23. Norman Weyrich, Gregory T. Warhola
    Pages 523-532
  24. J. Levesley, M. Roach
    Pages 557-566
  25. Mariano R. Arias, Jesús M. F. Castillo, Marilda A. Simoes
    Pages 567-570
  26. Back Matter
    Pages 571-572

About this book

Introduction

Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in Padé theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex.
Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences.

Keywords

Convexity Derivative Division Finite Hilbert space algorithms average calculus equation function image processing measure orthogonal polynomials recursion theorem

Editors and affiliations

  • S. P. Singh
    • 1
  1. 1.Memorial University of NewfoundlandSt. John’sCanada

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-015-8577-4
  • Copyright Information Springer Science+Business Media B.V. 1995
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-90-481-4516-4
  • Online ISBN 978-94-015-8577-4
  • Series Print ISSN 1389-2185
  • Buy this book on publisher's site