© 1998

Algebra and Operator Theory

Proceedings of the Colloquium in Tashkent, 1997

  • Yusupdjan Khakimdjanov
  • Michel Goze
  • Shavkat A. Ayupov

Table of contents

  1. Front Matter
    Pages i-viii
  2. Sh. A. Ayupov, B. A. Omirov
    Pages 1-12
  3. C. N. Costinescu
    Pages 39-48
  4. M. Goze, Yu. Khakimdjanov
    Pages 49-64
  5. M. Goze, J. M. Ancochea Bermudez
    Pages 65-91
  6. J. M. Cabezas, J. R. Gómez, A. Jimenez-Merchán
    Pages 93-102
  7. Kamola Khakimdjanova
    Pages 117-126
  8. Sh. Bromberg, A. Medina
    Pages 127-144
  9. Dj. Khadjiev, T. M. Shamilev
    Pages 157-164
  10. T. Hangan
    Pages 165-176
  11. N. N. Ganikhodzhaev, F. M. Mukhamedov
    Pages 187-192
  12. N. J. Yadgorov, M. M. Ibragimov
    Pages 203-206
  13. Ch. Kassel
    Pages 213-236
  14. Back Matter
    Pages 249-250

About this book


This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups.
Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.


Cohomology Lattice Operator theory Theoretical physics algebra algebraic varieties differential geometry manifold

Editors and affiliations

  • Yusupdjan Khakimdjanov
    • 1
    • 2
  • Michel Goze
    • 2
  • Shavkat A. Ayupov
    • 1
  1. 1.Institute of MathematicsUzbekistan Academy of SciencesTashkentUzbekistan
  2. 2.Department of MathematicsUniversité de Haute AlsaceMulhouse-ColmarFrance

Bibliographic information