The Rhizobiaceae

Molecular Biology of Model Plant-Associated Bacteria

  • Herman P. Spaink
  • Adam Kondorosi
  • Paul J. J. Hooykaas

Table of contents

  1. Front Matter
    Pages i-xxiv
  2. Peter van Berkum, Bertrand D. Eardly
    Pages 1-24
  3. Michael F. Hynes, Turlough M. Finan
    Pages 25-43
  4. Ben J. J. Lugtenberg
    Pages 45-53
  5. Michaël W. Breedveld, Karen J. Miller
    Pages 81-96
  6. Anke Becker, Alfred Pühler
    Pages 97-118
  7. Elmar L. Kannenberg, Bradley L. Reuhs, L. Scott Forsberg, Russell W. Carlson
    Pages 119-154
  8. Michael J. Sadowsky, Peter H. Graham
    Pages 155-172
  9. Yves Dessaux, Annik Petit, Stephen K. Farrand, Peter J. Murphy
    Pages 173-197
  10. Stephen K. Farrand
    Pages 199-233
  11. Ann G. Matthysse, Jan W. Kijne
    Pages 235-249
  12. Andrew N. Binns, Paolo Costantino
    Pages 251-266
  13. Luca Rossi, Bruno Tinland, Barbara Hohn
    Pages 303-320
  14. Wanyin Deng, Eugene W. Nester
    Pages 321-338
  15. Kathleen D’Halluin, Johan Botterman
    Pages 339-345
  16. Az-Eddine Hadri, Herman P. Spaink, Ton Bisseling, Nicholas J. Brewin
    Pages 347-360
  17. Helmi R. M. Schlaman, Donald A. Phillips, Eva Kondorosi
    Pages 361-386
  18. J. Allan Downie
    Pages 387-402
  19. Az-Eddine Hadri, Ton Bisseling
    Pages 403-416
  20. Pierre A. Kaminski, Jacques Batut, Pierre Boistard
    Pages 431-460
  21. Michael L. Kahn, Tim R. McDermott, Michael K. Udvardi
    Pages 461-485
  22. Back Matter
    Pages 531-566

About this book


The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria. This book gives a comprehensive overview on our present molecular biological knowledge about the Rhizobiaceae, which currently can be called the best-studied family of soil bacteria. For many centuries they have attracted the attention of scientists because of their capacity to associate with plants and as a consequence also to specifically modify plant development. Some of these associations are beneficial for the plant, as is the case for the Rhizobiaceae subgroups collectively called rhizobia, which are able to fix nitrogen in a symbiosis with the plant hosts. This symbiosis results in the fonnation of root or stem nodules, as illustrated on the front cover. In contrast, several Rhizobiaceae subgroups can negatively affect plant development and evoke plant diseases. Examples are Agrobacterium tumefaciens andA. rhizogenes which induce the formation of crown galls or hairy roots on the stems of their host plants, respectively (bottom panels on front cover). In addition to the obvious importance of studies on the Rhizobiaceae for agronomy, this research field has resulted in the discovery of many fundamental scientific principles of general interest, which are highlighted in this book. To mention three examples: (i) the discovery of DNA transfer of A.


bacteria biology biosynthesis development genetic engineering metabolism molecular evolution nitrogen nitrogen metabolism plant plant development roots soil systematics transcription

Editors and affiliations

  • Herman P. Spaink
    • 1
  • Adam Kondorosi
    • 2
  • Paul J. J. Hooykaas
    • 1
  1. 1.Institute of Molecular Plant Sciences, Clusius LaboratoryLeiden UniversityLeidenThe Netherlands
  2. 2.Institut des Sciences VégétalesCNRSGif sur Yvette, CedexFrance

Bibliographic information