Engineering Systems with Intelligence

Concepts, Tools and Applications

  • Spyros G. Tzafestas

Part of the Microprocessor-Based and Intelligent Systems Engineering book series (ISCA, volume 9)

Table of contents

  1. Front Matter
    Pages i-xv
  2. High Autonomy Systems

    1. Front Matter
      Pages 1-1
    2. B. P. Zeigler, S. D. Chi, F. E. Cellier
      Pages 3-22
  3. Knowledge Based System

    1. Front Matter
      Pages 23-23
    2. Afshin Shamsolmaali
      Pages 25-32
    3. G. A. Vouros, C. D. Spyropoulos
      Pages 43-49
    4. G Papakonstantinou, T Panayiotopoulos, M Sideri
      Pages 59-64
    5. T. Panayiotopoulos, G. Papakonstantinou
      Pages 65-71
    6. Robert P. Futrelle, Ioannis A. Kakadiaris
      Pages 73-81
    7. R. V. van de Ree, H. Koppelaar, E. J. H. Kerckhoffs
      Pages 83-90
    8. Carlos Ramos, Eugénio Oliveira
      Pages 99-106
    9. Eugenio Oliveira, Carlos Ramos
      Pages 107-115
    10. Jian Peng, Stephen Cameron
      Pages 117-124
    11. E. A. Giakoumakis, G. Papakonstantinou
      Pages 133-137
    12. G. Frangakis, P. E. Trahanias
      Pages 139-146
    13. D. A. Gaganelis, E. D. Frangoulis
      Pages 147-154
    14. A. Rattini, G. Romanin Jacur
      Pages 163-168
  4. Neural Network System

    1. Front Matter
      Pages 177-177
    2. Marco Dorigo, Bernhard Schätz, Domenico Sorrenti
      Pages 179-186
    3. Elias B. Kosmatopoulos, Anastasios Chassiakos, Manolis A. Christodoulou
      Pages 187-195
    4. Toshio Fukuda, Takanori Shibata, Kazuhiro Kosuge, Fumihito Arai
      Pages 197-204
    5. Keigo Watanabe, Kozo Shiramizu, Toshio Fukuda, Spyros G. Tzafestas
      Pages 205-212
    6. George M. Papadourakis, Sifis Micheloyannis, George Bebis, Manolis Giachnakis
      Pages 221-228
  5. Sensory and Observation Systems

    1. Front Matter
      Pages 237-237
    2. Gerard T. McKee
      Pages 239-246
    3. Urbano Nunes, A. T. de Almeida, Pedro Faia, Rui Araújo
      Pages 247-255
    4. A. Caiti, G. Canepa, D. De Rossi
      Pages 257-264
    5. Anssi J. Mäkynen, Juha T. Kostamovaara, Risto A. Myllylä
      Pages 265-274
    6. Anssi J. Mäkynen, Juha T. Kostamovaara, Risto A. Myllylä
      Pages 275-284
    7. Konstantinos Tarabanis, Roger Y. Tsai, Peter K. Allen
      Pages 285-293
    8. Tarek M. Sobh, Ruzena Bajcsy
      Pages 295-303
    9. Josep Tornero, G. Hamlin, R. B. Kelley
      Pages 305-313
  6. Image Analysis and Machine Vision Systems

    1. Front Matter
      Pages 315-315
    2. Antonia J. Spyridi, Aristides A. G. Requicha
      Pages 317-324
    3. J. G. Ortega, E. F. Camacho
      Pages 325-332
    4. Carlos Cerrada, Katsushi Ikeuchi, Lee Weiss, Raj Reddy
      Pages 333-340
    5. M. Elarbi Boudihir, M. Dufaut, R. Husson
      Pages 357-365
    6. F. Vacherand, E. Crochon, F. Favre-Reguillon, M. Bogaert, S. Do, M. Halbach
      Pages 367-375
    7. M. Loupis, S. Karkanis, J. Vergados, K. Tsoutsou, B. Dimitriadis
      Pages 377-384
    8. L. G. Trabasso, J. R. Hewit, A. P. Slade
      Pages 385-393

About this book


This book contains a selection of papers presented at the "European Robotics and Intelligent Systems Conference" (EURISCON '91) held in Corfu. Greece (June 23-28. 1991). It is devoted to the analysis. design and applications of technological systems with built-in intelligence achieved through appropriate blending of mathematical, symbolic. sensing. computer processing. and feedback control concepts. methods and software / hardware tools. System intelligence includes human-like capabilities such as learning. observation. perception. interpretation. reasoning. planning. decision making. and action. Integrated intelligent decision and control systems obey Saridis' prinCiple of Increasing Precision with Decreasing Intelligence (IPDI). and have a hierarchical structure with three basic levels. namely Organization. Coordination. and Execution Levels. As we proceed from the organization to the execution level. the precision about the jobs to be completed increases and accordingly the intelligence reqUired for these jobs decreases. As an example. it is mentioned here that in an intelligent robotic system the organization tasks can be realized using a neural net. the coordination tasks by a Petri net. and the execution tasks by local sensors and actuators. The field of intelligent systems is a new interdisciplinary field with continuously increasing interest and expansion. It is actually the outcome of the synergetic interaction and cooperation of classical fields such as system theory. control theory. artificial intelligence. operational research. information theory. electronics. communications. and others.


Fuzzy Sensor Simulation algorithms automation autonom complex system fuzzy logic image processing logic ontology production quality assurance robot robotics

Editors and affiliations

  • Spyros G. Tzafestas
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Bibliographic information

  • DOI
  • Copyright Information Kluwer Academic Publishers 1991
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-010-5130-9
  • Online ISBN 978-94-011-2560-4
  • Series Print ISSN 2213-8986
  • Buy this book on publisher's site