Heterostructures on Silicon: One Step Further with Silicon

  • Yves I. Nissim
  • Emmanuel Rosencher

Part of the NATO ASI Series book series (NSSE, volume 160)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. GaAs ON Si

    1. M. N. Charasse, B. Bartenlian, J. P. Hirtz, A. Peugnet, J. Chazelas, H. Blank
      Pages 7-12
    2. J. De Boeck, J. B. Liang, J. Vanhellemont, G. Borghs
      Pages 13-18
    3. Zuzanna Liliental-Weber, E. R. Weber, J. Washburn, T. Y. Liu, H. Kroemer
      Pages 19-26
    4. R. Azoulay, E. V. K. Rao, B. Sermage, G. Leroux, L. Dugrand, N. Draidia
      Pages 27-36
    5. Luisa Gonzàlez, Ana Ruiz, Yolanda Gonzàlez, Angel Mazuelas, Fernando Briones
      Pages 37-44
    6. M. Kamp, J. Leiber, J. Musolf, A. Brauers, M. Weyers, H. Heinecke et al.
      Pages 45-50
    7. Don W. Shaw
      Pages 61-74
  3. Other III–V and II–VI on Si

    1. D. C. Houghton, J.-M. Baribeau, T. E. Jackman, J. McCaffrey, T. Sudersena Rao, J. B. Webb et al.
      Pages 75-83
    2. G. Radhakrishnan, A. Nouhi, J. Katz
      Pages 85-91
    3. A. Ackaert, P. Demeester, I. Moerman, R. Baets
      Pages 93-99
  4. SiGe Heterostructures

    1. C. J. Gibbings, C. G. Tuppen, M. A. G. Halliwell, M. Hockly, S. T. Davey, M. H. Lyons
      Pages 121-128
    2. M. Ospelt, K. A. Mäder, W. Bacsa, J. Henz, H. Von Känel
      Pages 129-136
    3. J.-M. Baribeau, D. J. Lockwood, M. W. C. Dharma-Wardana, G. C. Aers, D. C. Houghton
      Pages 145-152
    4. K. Eberl, W. Wegscheider, E. Friess, G. Abstreiter
      Pages 153-160
    5. S. Andrieu, F. Arnaud d’Avitaya, J. C. Pfister
      Pages 161-168
  5. Superconductors /Si Heterostructures

  6. Silicide / Silicon Heterostructures

    1. J. Henz, M. Ospelt, H. von Känel
      Pages 215-222
    2. L. Haderbache, P. Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, G. Gewinner
      Pages 223-229
    3. L. J. Chen, J. J. Chu, W. Lur, H. F. Hsu, T. C. Lee
      Pages 231-238
    4. K. Kohlhof, S. Mantl, B. Stritzker
      Pages 239-245
    5. C. W. T. Bulle-Lieuwma, A. H. Van Ommen, L. J. Van Ijzendoorn
      Pages 247-252
    6. F. Arnaud d’Avitaya, P. A. Badoz, A. Briggs, C. d’Anterroches, J. Y. Duboz, G. Fishman et al.
      Pages 253-259
  7. Polymers on Si

    1. Jiri Janata, Mira Josowicz
      Pages 273-280
    2. Karin Potje-Kamloth, Mira Josowicz
      Pages 281-288
  8. Silicon Insulators Heterostructures

    1. D. Bensahel
      Pages 289-301
    2. G. Kamarinos, G. Ghibaudo, D. Tsamakis, C. Papatriantafillou, E. Rokofillou
      Pages 303-309
    3. C. Fontaine, J. Castagne, E. Bedel, A. Munoz-Yague
      Pages 323-328
    4. S. Blunier, H. Zogg, H. Weibel
      Pages 329-334
    5. C. Pellet, C. Schwebel, P. Legagneux, J. Siejka
      Pages 335-340
    6. Tanemasa Asano, Hiroshi Ishiwara, Seijiro Furukawa
      Pages 341-357
  9. Back Matter
    Pages 359-362

About this book


In the field of logic circuits in microelectronics, the leadership of silicon is now strongly established due to the achievement of its technology. Near unity yield of one million transistor chips on very large wafers (6 inches today, 8 inches tomorrow) are currently accomplished in industry. The superiority of silicon over other material can be summarized as follow: - The Si/Si0 interface is the most perfect passivating interface ever 2 obtained (less than 10" e y-I cm2 interface state density) - Silicon has a large thermal conductivity so that large crystals can be pulled. - Silicon is a hard material so that large wafers can be handled safely. - Silicon is thermally stable up to 1100°C so that numerous metallurgical operations (oxydation, diffusion, annealing ... ) can be achieved safely. - There is profusion of silicon on earth so that the base silicon wafer is cheap. Unfortunatly, there are fundamental limits that cannot be overcome in silicon due to material properties: laser action, infra-red detection, high mobility for instance. The development of new technologies of deposition and growth has opened new possibilities for silicon based structures. The well known properties of silicon can now be extended and properly used in mixed structures for areas such as opto-electronics, high-speed devices. This has been pioneered by the integration of a GaAs light emitting diode on a silicon based structure by an MIT group in 1985.


Epitaxy RHEED Vakuuminjektionsverfahren metal optical properties quantum wells semiconductor silicon superlattice superlattices transport

Editors and affiliations

  • Yves I. Nissim
    • 1
  • Emmanuel Rosencher
    • 2
  1. 1.Physics of Materials and Microstructures DivisionBagneux Laboratory, C.N.E.T.BagneuxFrance
  2. 2.Physics DivisionCentral Research Laboratory, Thomson CSFOrsayFrance

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media B.V. 1989
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-94-010-6900-7
  • Online ISBN 978-94-009-0913-7
  • Series Print ISSN 0168-132X
  • Buy this book on publisher's site