Physical and Physiological Forest Ecology

  • Pertti Hari
  • Kari Heliövaara
  • Liisa Kulmala

Table of contents

  1. Front Matter
    Pages i-xii
  2. Pertti Hari, Liisa Kulmala, Mikko Havimo
    Pages 1-6
  3. Üllar Rannik, Samuli Launiainen, Jukka Pumpanen, Liisa Kulmala, Pasi Kolari, Timo Vesala et al.
    Pages 27-42
  4. Jaana Bäck, Eero Nikinmaa, Liisa Kulmala, Asko Simojoki, Tuomo Kalliokoski, Pertti Hari et al.
    Pages 43-223
  5. Teemu Hölttä, Pertti Hari, Kari Heliövaara, Eero Nikinmaa, Jukka Pumpanen, Timo Vesala et al.
    Pages 225-328
  6. Pertti Hari, Mikko Havimo, Juho Aalto, Pauliina Schiestl-Aalto, Eero Nikinmaa, Anna Lintunen et al.
    Pages 329-347
  7. Pertti Hari, Mikko Havimo, Kourosh Kabiri Koupaei, Kalev Jögiste, Ahto Kangur, Mirja Salkinoja-Salonen et al.
    Pages 349-396
  8. Pertti Hari, Mikko Havimo, Heljä-Sisko Helmisaari, Liisa Kulmala, Eero Nikinmaa, Timo Vesala et al.
    Pages 397-469
  9. Pertti Hari, Eero Nikinmaa, Toivo Pohja, Erkki Siivola, Jaana Bäck, Timo Vesala et al.
    Pages 471-487
  10. Back Matter
    Pages 505-534

About this book


This important contribution is the result of decades of theoretical thinking and high-value data collection by the University of Helsinki examining forest ecosystems in great detail. The ecology is dominated by a qualitative approach, e.g. species and vegetation zones, but in contrast quantitative thinking is characteristic in the exact sciences of physics and physiology. The editors have bridged the gap between ecology and the exact sciences with an interdisciplinary and quantitative approach. This book recognizes this discrepancy as a hindrance to fruitful knowledge flow between the disciplines, and that physical and physiological knowledge has been omitted from forest ecology to a great extent. Starting with the importance of mass and energy flows in the interactions between forest ecosystems and their environment, the editors and authors offer a strong contribution to the pioneer H. T. Odum and his work from over 50 years ago.
This book introduces a holistic synthesis of carbon and nitrogen fluxes in forest ecosystems from cell to stand level during the lifetime of trees. Metabolism and physical phenomena give rise to concentration, pressure and temperature differences that generate the material and energy fluxes between living organisms and their environment. The editors and authors utilize physiological, physical and anatomical background information to formulate theoretical ideas dealing with the effects of the environment and the state of enzymes, membrane pumps and pigments on metabolism. The emergent properties play an important role in the transitions from detailed to more aggregate levels in the ecosystem. Conservation of mass and energy allow the construction of dynamic models of carbon and nitrogen fluxes and pools at various levels in the hierarchy of forest ecosystems.
Testing the predictions of these theories dealing with different phenomena in forest ecosystems was completed using the versatile and extensive data measured at SMEAR I and II (Stations for Measuring Ecosystem Atmosphere Relations) and at six additional stands in Finland, and five stands in Estonia. The theories are able to predict fluxes at different levels in the forest ecosystem gaining strong corroboration in the numerous field tests. Finally, the combined results from different hierarchical levels in the forest ecosystem form the physical and physiological theory of forest ecology.


Conservation of Material and Energy Extra Cellular Enzymes Material and Energy Flux Regularities in Metabolism Regularities in Structure

Editors and affiliations

  • Pertti Hari
    • 1
  • Kari Heliövaara
    • 2
  • Liisa Kulmala
    • 3
  1. 1.Fac. Agriculture & Forestry, Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2., Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Fac. Agriculture & Forestry, Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland

Bibliographic information