Advanced Photonics with Second-Order Optically Nonlinear Processes

  • A. D. Boardman
  • L. Pavlov
  • S. Tanev

Part of the NATO Science Series book series (ASHT, volume 61)

Table of contents

  1. Front Matter
    Pages i-x
  2. Gaetano Assanto, Katia Gallo, Claudio Conti
    Pages 59-87
  3. S. Saltiel, I. Buchvarov, K. Koynov
    Pages 89-112
  4. G. I. Stegeman, R. Schiek, R. Fuerst, Y. Baek, D. Baboiu, W. Torruellas et al.
    Pages 133-161
  5. Katia Gallo, Gaetano Assanto, George I. Stegeman
    Pages 185-188
  6. P. Bontemps, A. D. Boardman
    Pages 189-192
  7. I. Ch. Buchvarov, P. N. Tzankov, V. Stoev, K. Demerdjiev, D. Shumov
    Pages 197-200
  8. V. V. Steblina, Y. S. Kivshar, A. V. Buryak
    Pages 201-204
  9. D. Neshev, M. Georgiev, A. Dreischuh, S. Dinev
    Pages 205-208
  10. V. S. Gerdjikov, E. G. Evstatiev, D. J. Kaup, G. L. Diankov, I. M. Uzunov
    Pages 219-226
  11. A. V. Churilova, A. P. Sukhorukov
    Pages 243-246
  12. S. V. Polyakov, A. P. Sukhorukov
    Pages 247-250
  13. V. M. Agranovich, A. M. Kamchatnov
    Pages 251-275
  14. M. Georgieva-Grosse, A. Shivarova
    Pages 319-343
  15. M. P. De Micheli, P. Baldi, D. B. Ostrowsky
    Pages 375-400
  16. I. Savatinova, I. Savova, E. Liarokapis, M. N. Armenise, V. Passaro
    Pages 401-404
  17. P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, G. Bellanca, P. Bassi
    Pages 405-408
  18. Grzegorz Zeglinski
    Pages 409-412
  19. I. Ourdev, D. Pesme, W. Rozmus, V. Tikhonchuk, C. E. Capjack, R. Senda
    Pages 413-414
  20. V. Marinova, S. Zhivkova, D. Tonchev, N. Metchkarovs
    Pages 419-422
  21. F. Bertrand, R. El Bermil, N. Paraire, N. Moresmau, P. Dansas
    Pages 423-426
  22. T. Angelov, A. Kalt, D. Lougnot
    Pages 449-450
  23. Yuri S. Kivshar
    Pages 451-475
  24. Back Matter
    Pages 477-486

About this book


Although it took some time to establish the word, photonics is both widely accepted and used throughout the world and a major area of activity concerns nonlinear materials. In these the nonlinearity mainly arises from second-order or third-order nonlinear optical processes. A restriction is that second-order processes only occur in media that do not possess a centre of symmetry. Optical fibres, on the other hand, being made of silica glass, created by fusing SiO molecules, are made of material with a centre of z symmetry, so the bulk of all processes are governed by third-order nonlinearity. Indeed, optical fibre nonlinearities have been extensively studied for the last thirty years and can be truly hailed as a success story of nonlinear optics. In fact, the fabrication ofsuch fibres, and the exploitation oftheir nonlinearity, is in an advanced stage - not least being their capacity to sustain envelope solitons. What then ofsecond-order nonlinearity? This is also well-known for its connection to second-harmonic generation. It is an immediate concern, however, to understand how waves can mix and conserve both energy and momentum ofthe photons involved. The problem is that the wave vectors cannot be made to match without a great deal of effort, or at least some clever arrangement has to be made - a special geometry, or crystal arrangement. The whole business is called phase­ matching and an inspection ofthe state-of-the-art today, reveals the subject to be in an advanced state.


Dispersion LED Laser Optics Transmission crystal diffraction photonics semiconductor

Editors and affiliations

  • A. D. Boardman
    • 1
  • L. Pavlov
    • 2
  • S. Tanev
    • 3
  1. 1.Joule Laboratory, Department of PhysicsUniversity of SalfordSalfordUK
  2. 2.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Optiwave CorporationNepeanCanada

Bibliographic information

  • DOI
  • Copyright Information Kluwer Academic Publishers 1998
  • Publisher Name Springer, Dordrecht
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-7923-5316-4
  • Online ISBN 978-94-007-0850-1
  • Series Print ISSN 1388-6576
  • Buy this book on publisher's site