Dual Tableaux: Foundations, Methodology, Case Studies

  • Ewa Orlowska
  • Joanna Golińska Pilarek

Part of the Trends in Logic book series (TREN, volume 33)

Table of contents

  1. Front Matter
    Pages i-xvi
  2. Foundations

    1. Front Matter
      Pages 1-1
    2. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 3-31
    3. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 33-67
    4. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 69-82
  3. Reasoning in Logics of Non-classical Algebras of Relations

    1. Front Matter
      Pages 83-83
    2. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 85-103
    3. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 105-120
    4. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 121-139
  4. Relational Reasoning in Traditional Non-classical Logics

    1. Front Matter
      Pages 141-141
    2. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 143-160
    3. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 161-176
    4. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 177-194
    5. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 195-213
  5. Relational Reasoning in Logics of Information and Data Analysis

    1. Front Matter
      Pages 215-215
    2. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 217-235
    3. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 237-249
    4. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 251-261
    5. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 263-275
    6. Ewa Orłowska, Joanna Golińska-Pilarek
      Pages 277-287

About this book

Introduction

The book presents logical foundations of dual tableaux together with a number of their applications both to logics traditionally dealt with in mathematics and philosophy (such as modal, intuitionistic, relevant, and many-valued logics) and to various applied theories of computational logic (such as temporal reasoning, spatial reasoning, fuzzy-set-based reasoning, rough-set-based reasoning, order-of magnitude reasoning, reasoning about programs, threshold logics, logics of conditional decisions). The distinguishing feature of most of these applications is that the corresponding dual tableaux are built in a relational language which provides useful means of presentation of the theories. In this way modularity of dual tableaux is ensured. We do not need to develop and implement each dual tableau from scratch, we should only extend the relational core common to many theories with the rules specific for a particular theory.

Keywords

Dual tableau Logic Proof theory Relation algebra

Authors and affiliations

  • Ewa Orlowska
    • 1
  • Joanna Golińska Pilarek
    • 2
  1. 1.National Institute of TelecommunicationsWarszawaPoland
  2. 2., Advanced Information TechnologyNational Institute of TelecommunicationsWarszawaPoland

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-007-0005-5
  • Copyright Information Springer Science+Business Media B.V. 2011
  • Publisher Name Springer, Dordrecht
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-94-007-0004-8
  • Online ISBN 978-94-007-0005-5
  • Series Print ISSN 1572-6126
  • About this book