Discrete Differential Geometry

  • Alexander I. Bobenko
  • John M. Sullivan
  • Peter Schröder
  • Günter M. Ziegler
Part of the Oberwolfach Seminars book series (OWS, volume 38)

Table of contents

  1. Front Matter
    Pages i-x
  2. Discretization of Surfaces: Special Classes and Parametrizations

    1. Front Matter
      Pages 1-1
    2. Alexander I. Bobenko
      Pages 3-35
    3. Wolfgang K. Schief, Alexander I. Bobenko, Tim Hoffmann
      Pages 67-93
    4. Yuri B. Suris
      Pages 117-133
  3. Curvatures of Discrete Curves and Surfaces

    1. Front Matter
      Pages 135-135
    2. John M. Sullivan
      Pages 137-161
    3. Elizabeth Denne, John M. Sullivan
      Pages 163-174
    4. John M. Sullivan
      Pages 175-188
  4. Geometric Realizations of Combinatorial Surfaces

    1. Front Matter
      Pages 189-189
    2. Günter M. Ziegler
      Pages 191-213
  5. Geometry Processing and Modeling with Discrete Differential Geometry

    1. Front Matter
      Pages 261-261
    2. Peter Schröder
      Pages 263-273

About this book

Introduction

Discrete differential geometry is an active mathematical terrain where differential geometry and discrete geometry meet and interact. It provides discrete equivalents of the geometric notions and methods of differential geometry, such as notions of curvature and integrability for polyhedral surfaces. Current progress in this field is to a large extent stimulated by its relevance for computer graphics and mathematical physics. This collection of essays, which documents the main lectures of the 2004 Oberwolfach Seminar on the topic, as well as a number of additional contributions by key participants, gives a lively, multi-facetted introduction to this emerging field.

Keywords

Minimal surface computer grapics curvature differential geometry discrete geometry polyhedral surface

Editors and affiliations

  • Alexander I. Bobenko
    • 1
  • John M. Sullivan
    • 2
  • Peter Schröder
    • 3
  • Günter M. Ziegler
    • 4
  1. 1.Institut für Mathematik, MA 8-3Technische Universität BerlinBerlinGermany
  2. 2.Institut für Mathematik, MA 3-2Technische Universität BerlinBerlinGermany
  3. 3.Department of Computer ScienceCaltech, MS 256-80PasadenaUSA
  4. 4.Institut für Mathematik, MA 6-2Technische Universität BerlinBerlinGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-7643-8621-4
  • Copyright Information Birkhäuser Verlag AG 2008
  • Publisher Name Birkhäuser Basel
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-7643-8620-7
  • Online ISBN 978-3-7643-8621-4
  • About this book