Quantifier Elimination and Cylindrical Algebraic Decomposition

  • Bob F. Caviness
  • Jeremy R. Johnson
Conference proceedings

Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)

Table of contents

  1. Front Matter
    Pages i-xix
  2. Bob F. Caviness, Jeremy R. Johnson
    Pages 1-7
  3. Michael J. Fischer, Michael O. Rabin
    Pages 122-135
  4. Dennis S. Arnon, George E. Collins, Scott McCallum
    Pages 136-151
  5. Dennis S. Arnon, George E. Collins, Scott McCallum
    Pages 152-165
  6. J. R. Johnson
    Pages 269-299
  7. L. González-Vega, T. Recio, H. Lombardi, M.-F. Roy
    Pages 300-316
  8. Hoon Hong, J. Rafael Sendra
    Pages 327-340
  9. Saugata Basu, Richard Pollack, Marie-Françoise Roy
    Pages 341-350
  10. Daniel Richardson
    Pages 351-364
  11. Back Matter
    Pages 393-431

About these proceedings


George Collins’ discovery of Cylindrical Algebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades. This volume is a state-of-the-art collection of important papers on CAD and QE and on the related area of algorithmic aspects of real geometry. It contains papers from a symposium held in Linz in 1993, reprints of seminal papers from the area including Tarski’s landmark paper as well as a survey outlining the developments in CAD based QE that have taken place in the last twenty years.


Algebraic Computation Symbolic Computation Symbolisches Rechnen Variable algorithms calculus complexity geometry proof

Editors and affiliations

  • Bob F. Caviness
    • 1
  • Jeremy R. Johnson
    • 2
  1. 1.Department of Computer and Information SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Mathematics and Computer ScienceDrexel UniversityPhiladelphiaUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Vienna 1998
  • Publisher Name Springer, Vienna
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-211-82794-9
  • Online ISBN 978-3-7091-9459-1
  • Series Print ISSN 0943-853X
  • Buy this book on publisher's site